ED 071902
titLe
Institut ion
SPONS AGENCY
bUREAU NO pUB date CONTRACT NOTE

EDRS PRICE DESCRIPTORS

IDENTIFIERS

8E 015539
Project Physics Reader 5, Models of the Atom. Harvard Univ., Cambridge, Mass. Harvard Project Physics.
Office of Education (DHEW), Washington, D.C. Bureau of Research.
SR-5-1038
68
OEC-5-10-058
272p.; Authorized Interim Version
MF-\$0.65 HC-\$9.87
*Atomic Theory; Instructional Materials; Physics; Quantum Mechanics; Reading Materials; Relativity; Science Materials; Secondary Grades; *Secondary School Science; *Supplementary Reading Materials Harvard Project Physics

ABSTRACT

As a supplement to Project Physics Unit 5, a collection of articles is presented in this reader for student browsing. Nine excerpts are given under the following headings: failure and success, Einstein, Mr. Tompkins and simultaneity, parable of the surveyors, outside and inside the elevator, the teacher and the Bohr theory of atom, Dirac and Born, the sea-captain's box, and looking for a new law. Six book passages are selected from related publications to deal with aspects of Thomson's model, mathematical representation of relativity, introductory quantum mechanics, Schrodingex's work, moon explorers' discoveries concerned with the island of research, relativity, possibility of inadequacies in education policies, evolution of physicist's picture of nature, fundamentals of wave mechanics, and physical and engineering problems in space travel. Illustrations are included for explanation purposes. The work of Harvard Project Physics has been financially supported by: the Carnegie Corporation of New York, the Ford Foundation, the National Science Foundation, the Plfred P. Sloan Foundation, the United States Office of Education, and Harvara University. (CC)
N
0
0
\square
0
\square
US DEPARTMENT OF HEALYH EDUCAYION \& WELFARE OFFICE OF EDUCATION THIS DOCUMENT HAS BEEN REPRO DUCED EXACILY AS RECEIVED FROM THE PERSON OR ORGANIZAIION ORIG INAIING IT POINTS CF VIEW OR OPIN IONS SIATED DO NOT NECESSARILY gerreseni official office of edu CAIION POSITION OP POLICY

An Introduction to Physics

This reader is the duthorized interim version of one of the many instructional materials being, developed by Harvard Project Physie., including text units, laboratory experiments r and teocher guides. Its development has profited from the help of many of the colleagues listed at the front of the text units.

ゐ
Copyrightic 1968, Project Physics Incorporated.
1-Copyright is claimed until Appil 1, 1.969. After April 1, 1969, all portions of this work nof identified herẹin as the subject of previous copyright'shat be in the public domain. The authorized interim version of the Harvard Projèct Physics course is being distributed at cost by Holt, Rinehart and Winston, Inc. by arrangement with Project Phy'sics Incorporated, a non-profit educational organization.

All persons making use of any part of these materials are

- requested to acknowledge the source and the financial support given to Project Physics by the agencies named below, and to include a statement that the publifcation of such material is not necessarily endorsed by Harvard Project Physics or any of the authors of this work.
\dot{B}
The work of Harvard Project Physics has been financially supported by the Carnegie Corporation of New York, the Ford Foundation, the National Science Foundation, the Alfred P. Sloan Foundation, the United States ©iffice of Edê̛çation and Harvard University.

Consult the Project Physics text for a partial list of the current and recent staff, consultants and advisory committee.

ED 071902

Project Physics Keader

5 Models of the Atom
 An Introduction to Physics

This is not a physics textbook. Rather, it is a physics reader, c collection of some of the best articles and book passages on physics. A few are on historic events in sciense, others contain some particularly memorable descript on of what physicists do; still others deal with philoscphy of science, or with the impact of scientific thought c, the imagination of the artist.

There are old and new classics, and also some littleknown publications; many have been suggested for inclusion because some teacher or physicist remembered an article with particular fondness. The majority of articles is not drawn from scientific papers of historic importance themselves, because maîerial from many of these is readily available, either as quotations in the Project Physics text or in special collections.

This collection is meant for your browsing. If you follow
 your own reading interests, chances are good that you will find here many pages that convey the joy these authors have in their work and ihe excitement of their ideas. If you want to follow up on interesting excerpts, the source list at the end of the reader will guide you for further reading.
1 Failure and Success 1
Charles Percy Snow
An excerpt from his novel The Search, published in 1934 and 1958.
2 Structure, Substructure, Superstructure 13
Cyril Stanley Smith
Chapter from Structure in Art and in Science, edited by Gyorgy Kepes, published ir. 1965
3 The Island of Research 26
Ernest Harburg 1966
4 The "Thomson" Atom 27
J. J Thomson
Chapter from the book, The World of the Atom, edited by H A Boorse and L Motz, published in 1966
5 Einstein 39
Leopold Infeld
Excerpts from his book, Quest, The Evolution of a Scientist, published in 1941
6 Mr Tompkins and Simultaneity 59
George Gamow
Excerpt from his book, Mr Tompkins in Paperback, published in 1965
7 Mathematics and Relativity 65
Eric M. Rogers
Chapter from his textbook, Physics for the Inquiring Mind, 1960
8 Relativity 98
Anonymous
A limerick published in 1955
9 Parable of the Surveyors 99Edwin F Taylor and John Archinald WheelerExcerpt from their book, Space. me Physics, W H Freeman and CompanyCopyright ©1966
10 Outside and Inside the Elevator 105Albert Einstein and Leopold InfeldExcerpt from their book, The Evolution of Physics, 1938 and 1961
11 Einstein and some Civilized Discontents 115
Martin Kleın Artıcle from the journal, Physics Today, January 1965
12 The Teacher and the Bohr Theory of the Atom 121
Charles Percy Snow
An excerpt from his novel The Search, published in 1934 and 1958
13 The New Landscape of Science 125
Banesh Hoffmann
Chapter from his book, The Strange Story of the Quantum, 1959
14 The Evolution of the Physicist's Picture of Nature 151
Paul A M. Dirac
Popuiar article published in 1963
15 Dirac and Born 161
Leopold Infeld
[xcerpt from Quest
16 I am this Whole World: Enwin Schrodinger 171
Jeremy Bernstern
Chapter from Bernstein's book, A Comorehensible World On Modern Science and its Origins, published in 1961
17 The Fundamental idea of Wave Mechanics :81
Erwin Schrodinger
Schrodinger's Nobel Prize lecture given in December 1933
18 The Sentinel 193
Arthur C Clarke Chapter from his book, Expedition to Earth, 1953
19 The Sea-Captain's Box 205
John L Synge
Excerpt from his book, Science Sense and Nonsense, published in 1951
20 Space Travel: Problems of Physics and Engineering 221
Hârvard Project Physics Staff 1960
21 Looking for a New Law 245
Rıchard P. Feynman
Excerpt from his book, The Character of Physical Law, published. .11965.

ERIC

i Failure and Success

Charles Percy Snow

Almost as soon as I took up the problem again, it struck me in a new light. All my other attempts have been absurd, I thought: if I turn them down and make another guess, then what? The guess didn't seem probable; but none of the others was any good at all. According to my guess, the structure was very different from anything one would have imagined; but that must be true, since the obvious sticicture didn't fit any of my facts. Soon I was designing structures
with little knobs of plasticine for atoms and steel wires to hold them together; I made up the old ones, for comparison's sake, and then I buiit my new one, which looked very odd, very different from any structure I had ever seen. Yet I was excited-_"I think it works," I said, "I think it works."

For I had brought back to mind some calculations of the scattering curves, assuming various models. None of the values had been anything like the truth. I saw at once that the new structure ought to give something much nearer. Hurriedly I calculated: it was a long and tiresome and complicated piece of arithmetic, but I rushed through it, making mistakes through impatience and having to go over it again. I was startled when I got the answer: the new model did not give perfect agreement, but it was far closer than any of the others. So far as I remember, the real value at one point was 1.32 , my previous three mode gave 1.1, 1.65 and 1.7 , and the new one just under 1.4. 'I'm on it, at last,' I thought. 'It's a long shot, but I'm on it at last.'

For a fortnight I sifted all the evidence from the experiments since I first attacked the problem. There were a great many tables of figures, and a pile of X-ray photographs (for in my new instrument in Cambridge I was using a photographic detector) ; and I had been through most of them so often that I knew them almost by heart. But I went through them again, more carefully than ever, trying to interpret them in the light of the new structure. 'If it's right,' I was thinking, 'then these figures ought to run up to a maximum and then run down quickly.' And they did, though the maximum was less sharp than it should have been. And so on through experiments which represented the work of over a yea، ; they all fitted the structure, with an allowance for a value a shade too big here, a trifle too small there. There were obviously approximations to make, I should have to modify the structure a little, but that it was on the right lines I was certain. I walked to my
rooms to lunch one morning, overflowing with pleasurc; I wanted to te!! someone the news; I waved violently to a man whom I scarcely knew, riding by on a bicycle: I thought of sending a wire to Audrey, but decided to go and see her on the following day instead: King's Parade seemed a particularly admirable street, and young men shouting across it were all admirable young men. I had a quick lunch; I wanted to bask in satisfaction, but instcad I hurried back to the laboratory so that I could have it all finished with no loose ends left, and then rest for a while. I was feeling the after-taste of effort.

There were four photographs left to inspect. They had been taken earlier in the week and I had locked over them once. Now they had to be definitely measured and entered, and the work was complete. I ran over the first, it was everything I expected. The structure was fitting even better than in the early experiments. And the second: I lit a cigarette. Then the third: I gazed over the black dots. All was well-and then, with a thud of the heart that shook me, I saw behind each distinct black dot another fainter speck. The bottom had fallen out of everything: I was wrong, utterly wrong. I hunted round for another explanation: the film might be a false one, it might be a fluke experiment; but the look of it mocked me: far from being false, it was the only experiment where I had arrived at precisely the right conditions. Could it be explained any other way? I stared down at the figures, the sheets of results which I had forced into my scheme. My cheeks flushing dry, I tried to work this new photograph into my idea. An improbable assumption, another improbable assumption, a possibility of experimental crror-I went on, fantastically, any sort of criticism forgotten. Still it would not fit. I was wrong, irrevocably wrong. I should have to begin again.

Then I began to think: If I had not taken this photcgraph, what would have happened? Very easily I might not have taken it. I should have been satisfied with my
idea: everyone else would have been. The evidence is overwhelming, except for this. I should have pulled off a big thing. I should be made. Sooner or later, of course, someone would do this experiment, and I should be shown to be wrong: but it wouid be a long time ahead, and mine would have been an honourable sort of mistake. On my evidence I should have been righ. That is the way everyone would have looked at it.
I surpose, for a moment, I wanted to destroy the photograph. It was all beyond my conscious mind. And I was swung back, also beyond my conscious mind, by all the forms of-shall I call it "conscience"-and perhap; more than that, by the desire which had thrown me into the search. For I had to get to what I myself thought was the truth. Honour, comfort and ambition were bound to move me, but I think my own desire went deepest. Witheut any posturing to myself, without any sort of conscious thought, I laughed at the temptation to destroy the photograph. Rather shakily I laughed. And I wrote in my note-book:

Mar. 30: Photograph 3 alone has secondary dots, concentric with major dots. This removes a possibility of the hypothesis of structure B. The interpretation from Mar. 4-30 must accordingly be disregarded.

From that day I understood, as I never had before, the frauds that creep into science every now and then. Sometimes they must be quite uncouscious: the not-seeing of facts because they are inconvenient, the delusions of one's own senses. As though in my case I had not seen, because my unconscious seif chose not to see, the sec .. dary ring of dots. Sometimes, more rarely, the fraud mest tee nearer to consciousness; that is, the fraud must be realised, even though the man cannot control it. That was the point of my temptation. It could only be coin, mitted by a man in whom the scientific passion was weaker for the time than
the ordinary desires for place or money. Sometimes it would be done, impulsively, by men in whom no faith was strong; and they could forget it cherfully themselves and go on to do good and honest work. Sometimes it would be done by a man who reproached himself all his life. I think I could pick out most kinds of fraud from among the mistakes I have seen; after that afternoon I could not help being tolerant towards them.
For myself, there was nothing left to do but start again. I looked over the entry in my note-book; the ink was still shining, and yet it seemed to have stood, final, leaving me no hope, for a long time. Because I had nothing better to do, I made a list of the structures I had invented and, in the end, discarded. There were four of them now. Slowly. I devised another. I felt sterile. I distrusted it; and when I tried to test it, to think out its properties, I had to force my mind to work. I sat until six o'clock, working profitlessly; and when I walked out, and all through the night, the question was gnawing at me: 'What is this structure? Shall I ever get it? Where am I going wrong?'
I had never had two sleepless nights together before that week. Fulfilment deferred had hit me; I had to kecp from reproaching myself that I had already wasted months over this problem, and now, just as I could consolidate my work, I was on the way to wasting another year. I went to ber late and heard the Cambridge clocks, one after another, chime out the small hours; I would have ideas with the uneasy clarity of night, switch on my light, scribble in my note-book, look at my watch, and try to sleep again; I vould rest a little and wake up with a start, hoping that it was morning, to find that I had slept for twenty minutes: until I lay awake in a grey dawn, with all my doubts pressing in on me as I rried with tired eyes to look into the future. 'What is the structure? What line must I take?' And then, as an under-theme, 'Am I going to fail at my first big job? Am I always going to be a competent worker
doing littic problems?' And another, 'I shall be wentysix in the winter: I ought to be established. But shall I be getting anywhere?' My ideas, that seemed hopeful when I got out of bed to write them, were ridiculous when I saw them in this cold light.
This went on for three nights, until my work in the daytime was only a pretence. Then there came a lull, when I forgot my worry for a night and slept until mid-day. But, though I woke refreshed, the questions began to whirl round again in my mird. For days it went on, and I could find no way out. I walked twenty miles one day, along the muddy fen-roads between the town and Ely, in order to clear my head; but it only made me very tired, and I drank myself to sleep. Another night I went to a play, but I was listening not to the actors' words, but to others that formed themselves inside me and were giving me no rest.
iv
I started. My thoughts had stopped going back upon themselves. As I had been watching Audrey's eyes, an idea had flashed through the mist, quite unreasonably, illogically. It had no bearing at all on any of the hopeless attempts I had been making; I nad explored every way, I thought, but this was new; and, too agitated to say even to myself that I believed it, I took out some paper and tried to work it out. Audrey was staring with intent eyes. I could not get very far. I wanted my results and tables. But everything I could put down rang true.
"An idea's just come to me," I explained, pretending to be calm. "I don't think there's anything in it. But there might be a little. But anyway I ought to try it out. And I haven't my books. Do you mind if we go back pretty soon?" I fancy I was getting up from the table, for Audrey smiled.
"I'm glad you had some excuse for not listening," she said.

She drove back very fast, not speaking. I made my plans for the work. It couldn't take less than a week, I thought. I sat hunched up, telling myself that it might all be wrong again; but the structure was taking shape, and a part of me was beginning to laugh at my caution. Once I turned and saw Audrey's profile against the fields; but after a moment I was back in the idea.

When I got out at the Cavendish gateway, she stayed in the car. "You'd better be alone," she said.
"And you?"
"I'll sit in Green Street." She stayed there regularly on her week-end visits.

I hesitated. "It's_-"
She smiled. "I'll expect you to-night. About ten o'clock," she said.

v

I saw very little of Audrey that week-end. When I went to her, my mind was active, my bodv tired, and despite myself it was more comfort th . .sked of her. I remember her smiling, a little wryly, and saying: "When this is over, we'll go away. Right away." I buried my head against her knees, and she stroked my hair. When she left me on the Monday morning, we clung to each other for a long time.

For three weeks I was thrusting the idea into the mass of facts. I could do nothing but calculate, read up new facts, satisfy myself that I had made no mistakes in measuring up the plates: I developed an uncontrollable trick of not being sure whether I nad made a particular measurement correctly: repeating it: and then, after a day, the uncertainty returned, and to ease my mind I had to repeat it once more. I could scarcely read a newspaper or write a letter. Whatever I was doing, I was not at rest unless it was taking me towards the problem; and eve hen it was an unsettled rest, like lying in a fever half-way to sleep.

And yet, for all the obsessions, I was gradually being taken over by a calm which was new to me. I was beginning to feel an exultation, but it was peaceful, as different from wild triumph as it was from the ache in my throbbing nerves. For I was beginning to feel in my heart that I was near the truth. Beyond surmise, beyond doubt, i felt that I was nearly right; even as I lay awake in the dawn, or worked irritably with flushed cheeks, I was approaching a serenity which made the discomforts as trivial as those of someone else's body.

It was after Easter now and Cambridge was almost empty. I was glad; I felt free as I walked the deserted streets. One night, when I left the labouatory, after an evening when the new facts were falling into line and making the structure seem more than ever true, it was good to pass under the Cavendish! Good to be in the midst of the great days of science! Good to be adding to the record of those great days! And good to walk down King's Parade and see the Chapel standing against a dark sky without any stars!
The mingling of strain and certainty, of personal worry and deeper peace, was something I had never known before. Even at the time, 1 knew I was living in a strange happiness. Or, rather, I knew that when it was over I should covet its memory.
And so for weeks I was alone in the laboratory, taking photographs, gazing under the red lamp at films which still dripped water, carrying them into the light and studying them until I knew every grey speck on them, from the points which were testing my structures down to flaws and scratches on the surface. Then, when my eyes tired, I put down my lens and turned to the sheets of figures that contained the results, the details of the structure and the predictions I was able to make. Often I would say-if this structure is right, then this crystal here will have its oxygen atom I. 2 a.u. from the nearest carbon; and the crystal will
break along this axis, and not along that; and it will be harder than the last crystal I measured, but not so hard as the one before, and so on. For days my predictions were not only vaguely right, but right as closely as I could measure.

I still possess those lists of figures, and I have stopped writing to look over them again. It is ten years and more since I first saw them and yet as I read:

Predicted	Observed
I .435	I .44
2.603	2.603

and so on for long columns, I am warmed with something of that first glow.

At last it was almost finished. I had done everything I could; and to make an end of it I thought out one prediction whose answer was irrefutable. There was one more substance in the organic group which I could not get in England, which had only been made in Munich; if my general structure was right, the atoms in its lattice could only have one pattern. For any other structure the pattern wo uld be utterly different. An X-ray photograph of the crystal would give ine all I wanted in a single day.

It was tantalising, not having the stuff to hand. I could write and get some from Munich, but it would take a week, and a week was very long. Yet there seemed nothing else to do. I was beginning to write in my clumsy scientist's German-and then I remembered Lüthy, who had returned to Germany a year ago.

I cabled to him, asking if he would get a crystal and photograph it on his instrument. It would only take him a morning at the most, I thought, and we had become friendly enough for me to make the demand on him. Later in the afternoon I had his answer: "I have obtained crystal will telegraph result to-morrow honoured to assist. Lüthy." I smiled at the "honoured to assist", which he could not
possibly have left out, and sent off another cable: "Predict symmetry and distances. . . ."

Then I had twenty-four hours of waiting. Moved by some instinct to touch wood, I wanted to retract the last cable as soon as I had sent it. If-if I were wrong, no one else need know. But it had gone. And, nervous as I was, in a way I knew that I was right. Yet I slept very little that night; I could mock, with all the detached part of myself, at the tricks my body was playing, but it went on playing them. I had to leave my breakfast, and drank cup after cup of tea, and kept throwing away cigarettes I had just lighted. I watched myself do these things, but I could not stop them, in just the same way as one can watch one's own body being afraid.
The afternoon passed, and no telegram came. I persuaded myself there was scarcely time. I went out for an hour, in order to find it at my rooms when I returned. I went through all the antics and devices of waiting. I grew empty with anxiety as the evening drew on. I sat trying to read; the room was growing dark, but I did not wish to switch on the light, for fear of bringing home the passage of the hours.
At last the bell rang below. I met my landlady on the stairs, bringing in the telegram. I do not know whether she noticed that my hands were shaking as I opened it. It said: "Felicitations on completely accurate prediction which am proud to confirm apologise for delay due to instrumental adjustments. Lithy." I was numbed for a moment; I could only see Lüthy bowing politely to the postal clerk as he sent off the telegram. I laughed, and I remember it haci a queer sound.

Then I was carried beyond pleasure. I have tried to show something of the high moments that science gave to me; the night my father talked about the stars, Luard's lesson, Austin's opening lecture, the end of my first research. But this was different from any of them, different altogether, different
in kind. It was further from myself. My own triumph and delight and success were there, but they seemed insignificant beside this tranquil ecstasy. It was as though I had looked for a truth outside myself, and finding it had become for a moment part of the truth I sought; as though all the world, the atoms and the stars, were wonderfully clear and close to me , and I to them, so that we were part of a lucidity more tremendous than any mystery.
I had never known that such a moment could exist. Some of its quality, perhaps, I had captured in the delight which came when I brought joy to Audrey, being myself content; or in the times among friends, when for some rare moment, maybe twice in my life, I had lost myself in a common purpose; but these moments had, as it were, the tone of the experience without the experience itself.
Since then I have never quite regained it. But one effect will stay with me as long as I live; once, when I was young, I used to sneer at the mystics who have described the experience of being at one with God and part of the unity of things. After that afternoon, I did not want to laugh again; for though I should have interpreted the experience differently, I thought I knew what they meant.

Structure, Substructure, Superstructure

Cyril Stanley Smith

Anyone who works wath the mexroccope for an metlectual or practical purpose will frequenth pause for a moment of sheer enoyalent of the patteras that he sess, for the have nuth in common with formal art 1 hat toltows 3 all atternpt to citend mito a more general field $\mathbf{6 m}$, um on the nature of organization and relatolushaps that aroxdurng many years of stud of the microctructures of metals and allovs * ! a a landscape panting of the Far East. a rock in the foreground with crachs and cristallate tevture is often echoed in a distant mountan with chefs chasms, urimhles, and val'ivs, a tree may be related to a distane forest or a turbulent and edded streans to a distant tranguil pond Each part with its own structure merges into a structure on a larger scale Underlyng structures wheh are onlv imac. med are necessan as a bassis for the wisble features Ihe connectevitt of all is suggested by the branding tree-like element of the de sign Both separateness and contumut, are interwoven, each weressary to the other and demonstrating the relatoonshep between various fatures on a single scale and betueen the um and aggregates on different scales There is a close analog, between a work of art which suggests an interplav of dunensione and the real internal structure of a piece of metal or rosh whech results from phascal interactions betneen the atoms and electrons composing it

The study of nucrostrut ture on the scale withun the range of the optical nucroscope dimentions between a micron and a mullineteri is a conicuhat old fashoned branch of science, and it still involes a high atgree of empirical observation and deduction Far more "highbrow" is the ngorous science and simple elegant mathematics of the ideal crvstal latuce considered as ponitgroups in space The whole field of eristal structure, mathenaticall developed in the mineteenth century b, Bravas. Federow, and Schoenfles, was experimentally opened up by Von Laue and especially the Braggs in 1912-13, using the diffraction of X-ravs to reveal and to measure the periodecties and $\vee \mathrm{m}$ metries in the arrangement of planes of atoms in crestals But the mathematical phisicist must sumplify in order to get

- The conieree relanonsthp betwech acothetiss and metallures the influence of the eechniques disconeret by iriftemen makne works of art upon the derelopment of the wence of tme cals wadiowed

Fig : Group of polyhedral salt cristals growing individually from solution Magmfication x 200 (Photo oy C W' Mason)
a ' lanageable model, and although his coacepts are of great braut, they are austire in the extreme, and the more complicated enstal patterns obsen ed by the metallurgist or geologist, being based on partly imperfect realit, often have a n her aesthetic content Those who are concerned with structure on a superatomic scale find that there is more signeficance and interest in the imperfections in er stals than in the monotonous perfection of the cissal latuce itself Lake the boologist, the metallurgist is concerned with aggregates and assemblies in which repeated or extended irregulartues in the arrangement of atoms hecome the bass of major structural features on a larger scalc, eventually bndgine the gap between the atom and thuge percepuble to luman senses

The symmetn of en stak in rilation to decoratus ornamont has been teated bv manv writer, none better than b, Hermann Wril in lis Symmetr Prancton, 1952, The patterns of ensid impertection are less commonk known, decpute thoir prevaience and despute their relationship to so many acstiscuralls sausfing forms in wheh regulanty and arregularitio are mentacely mertioned

Crystalline Aggregates and Foan Structures Aggregates of cryatak have stincture which are defined by the atomicalis than laver of doordered material between the crotals Manv chardeteristo of then shape are shared with cmple undifferentated bological cell, and the simplevt common sodp froth in all these. the pertincmitatures are the two-dmensonal surfaces that eparate volumes of natter whell, on tha wale, wfatueles fino-dimenwomal meterface are necessan to defne the wearatc do ntity

Hig 2 Kaff of tur umform wap butble shoumg'gran lxoundaris whe te ones of daftenme one ntatum meet Wagmitation $x 7$

Ife 3 De eph etthed oction of a piect of thothum mital howing nt thoth of gra.n boundarie reveded bu sele tace atach at gram boundaries Magmanamen 200 (Pheto Cimerest R J Grav, Oak Ridec Tatsonal / aboratorn)

Fir \& surlace of over-heated atummam the et shoning the begin. time of the lang at the gram benndareser Vagniticateon if (Photo (outtess Britus bon-Herrous Wetals Researth Association)

He 3 kethed ection of whion-mon allon thowme the jumetion of three (rvials thas an andonc photograph tahen in rBy by J E. suad
 4

of things in three dimensions Junctions of the interfaces themselves produce linear (one-dimensional; features, and these, in turn, meet at points of zero dimension This miteractoon between dimensions, the very essence of form, is expressed in nathematical beauts as Euleris Lan This simpl, states that, in a connected arrat, the number of points minus the number of lines plus the number of surfaces and minus the number of poly hedral cells is equal to one, 1 e . $n_{0}-n_{1}+n_{2}-n_{3}=1$
where n_{0}, n_{1}, n_{2}, and n_{3} are the numbers of zero, one, two, and three-dimensional features There are no himitatoons to this, bevond the requirements of ample connectisen Even more than Euchd, hath Euler gazed on beautv bare

A pure metal, when cast for, better, after a little worhing and heaungl has a structure like that of Carrara marble-hosts of hetle cn stals pached together irreguant: a he units do not look like crystals, for they lack the si mmetrical veruces and plane faces of a regular poly hedron, but internal order is there nevertheless Although for centunes man has been tasconated by the geometrical shape and ghter of natural crystals, he has only recently corne to see that the essence of enstallinity lies not in external shape but in the uniformit) of the relatouship of atoms to their neighbors within the crystal A sungle isolated crystal growing from a solution or melt can grow uninterrupedly in accordance with the dictates of the atomic stepr on its surface U'sually this will result in a simple polyhedron (Fig 1), reflecting the miternal order because of its effect on the rate of growth in different direcwons If many croctals start to grow in the same region, sconer or later they will interferc with each other. Neighboring or stals differing in no way whatever but in the direction of there atom rows in space cannot join without some imperfection Figure 2 illustrates this It is a magnafied photograph of an array of tiny unforn bubbles floaung on soap) water The lines of disorder that form between the differentl. onented areas of reguiarl arranged bubble in this wo dimenoonal model are believed to be dosel, analogous to the planes of droorder constituting the boundaries between the threc-dimensonal cristal grane motals, rochs, and other polionstallime materials I he bouadaries are a wource of both strength and weakiess and they pronde the stes for the ieginning of ant ervstallue change Ihough themselves ins isble except at the extreme himt of rexolutern of modern electron and ion mucroscop, thes differ so mucla in energy from the bod of the crestals that they are easils revealed as lines of enhanced chemeal attach ithg 3; earl melong. (Fig 4), or thev can be inferred from the sudden change of
enstal direction revealed be sonr hinds of chemical attach on the surface (5ig 5) Paterns lihe these can often be seen with the naked eve on the weathered surface of a cast brass doorknob or hand all, or meternall, in clear we which has been kept juit at its meltung pont for several hours

Dow these boundanes, which on an domic scale are just imperfections in a unform stacking arras, on a larger scale themsel es beconie the basis of etructure Thes are, in fact, films of niat:s, distunguished by structure rather than compostion. Ther must surround even enstal and extend in foam-Ihe tashon conturuoush through the entire mass

Fie 6 Froth of irregular noap bubble showing a cellular structure analogous to that of mitals theve bubbles were bibwn between
 (1/
 hathon×: 5
tig 8 the shape of cells in hurban tat usume Magntfication $x 4^{\circ}$ - Photo b) I I leitas, Countest 1 menian 4 cademb of 4 tit and Sirenes.
fig o Contal grame ot a meral brass separated froman aggreeate showine the atural shape of crostals when packed ratidoma mto contac' . 'th rach other Vote the frequenct of pentagons and cursed surt ,

Fik to Duplex cratak with baids of different comporitoon it exact onsentation relationship within one grain. but forming an silicon allov worked and annealed Magntication x ano wher an etthed vection

[^0]

Fig it Transformation itructure in a bardened nickel sieel. showing interference between differenth onented crytals prowing within the samp enstalline matinx Magnification $x 250$ (Phow by Daniel Hofman)

Fig is Branchink pastern in corrosion of stainless sted in ulansl sulphate wolutron Magnification $\times 100$ (Phose Courtiy R \bar{J} Gray. Oat Ridge Nationel Laberatisy)

Having high energy and mobility. they tend to adjust to a conftguration of small area, which makes them join each other alnass in groups of three at an . 7gle of 120 , just as do the films in a froth of soap) bubbles in a mass of laige bubbles of arregular size tig 6, theie will be differences in pressure beineen adjacent bubbles to math the surface tenston th the cuned films and to teconcile the 120° angle with the necessitv to fill spase Since three bubbles meet at each junction, l.uler'd lan requires that the average bubble in an infintelv extended arrat muss have exactly six sides. bus there is no requirement that each one lx a bexagon, onlo that if there are wome with more than six sides, there must be 2 matcining number with less 'I he froth therefore, though lacking long-range syirmetri, neveriheless has sen definte rules as to its composition it is pleasing in appearance
because the eye senses this interplay between regulaniv and irregularsy The topological requirements of space. filling ngidly detennine the relationships of the whole. but allow any one cell to be of pretty much anv shape. while surface tenston equilibnuni requires onlv that the film be at 120° to each other at the potnt of meeung. alwass three together, and it produces the pressuse differeticer that are needed to balance the resulning cunatures Bevond this, all depends on the arcidents which brought a bubbie of a particular size to a given place and surrounded it with its parsicular netghbers, cach also with its private histon

It is interesting to compare a ino dimensonal soap froth with the tonologically nmilar but Reometricall defferent patiern of craze marks in a ceramis glaze (Fig 7) Though the cracks divide the surface into cells meeting three at each junction. the geometh is different from the froth because the cracks must follow the direction of stress in the glaze and a uew crack ons an old one perpendicularly

A foam in three dimensions is a bit more complicated but deperids on the same principles To divide space into three-dimensional cells, at leas: ix ixo-dimensional interfaces must meet ar each point, and if surface tension dom. nate they will join in groups of three at 120 to each other alonk lines. forming cell edges, which meet simmetricall, at the etrahedral angle of 109 47. The angle whose comes minus 's) this contiguration of three-. ino. and one. dimensional junctiom is reprated at even vertex Cunatite is necessang to connect adjacent veritices and to reconcile the hort- and long-range nerds Because the poligons well faces) mast be in groups which close around each there dimensional cell. the averafe poligon will have a smaller number of sides than ti e hexagon wheh conneriedly fills space th iwo dmensions Vosangle plane poligon can meer the requarements. for ti would have to have 51043 sides in order io have comer angles of t19947 The best rohition that hac been proposed, orresponds to a fourterisisided bxat with six plane four-sided faces and esglit double-cuned hexagonal faces, the mixture of polligons liaving on the aterake $51 /$ sides This cunous irational number is of the utmost ime. portance, though it is hote appreciated Ceriamis it is re. sponstble for the prevalence of pentagons in nature it is probably behind the fivectold symmetn of plants and the five fingers and toes of anmmals Firequent pentagonal faces 2re readily seen within a three-dimensional Iroth of babbles on a glass of beer and then ocrur also in such disparate bodies as human fat cells or metal grams figs 8 and 9 Pentagons are frequent but not universal. tor the ideal num.
\qquad

 - pritehs
ber wan irratomal one and pentagonall-laned pokhetid alone camon thll cpace

It hoult tr noted that the exters ape of the contals an Fig 9 revean nothang of thes mane onter fos the shape depend on the properti of the dacodered buand an, not the ondeied crivals that are separated 1 mome cibuoush ©ncollane geometric struc ture ox cun when a vecond enval. line phas onghaten in direst combart with a pererxoteng one. for it athomatic 2 llb lorms an whateset definte otienta.

 with rath other formang duplex onemed umse wheth ererear the lasus for an miegular team-libe aggregate quille vimblat to that formed bs ancak of a vagle substame f,xampler of such onemed duplex structares are shown it Figs 10 to 12

 "f ech premeeded fiom the sup to the bentem of the higate Vlapil:
 (mopars)

Branched Struciures

I he wop :roth wo the archetupe for all cellotar sotems whith for ant reason are constraned toward a mummum ares of antethice Aquie dafferent tipe of vinuture though a iommon one. is the one that results from the growith of solated induidask in the hrant hed form best illustrated bu a common tree Thusoccurs wheneser a prorsberance has an adantage ober adpacent areas in getung more matter heat light, or other requate for gerowth such stractures oxcurm electric discharge, in cormoton Fig 13 . and cien in enval growth Fig it although in the lass case the hasic merhansm wigen an owetall smmetn . Nil these brancone structures start irom a ponet and grou uneallis but the eventuall stop as the hrancher menterere whth nthers alread precent (and the structure enconnters some ex. traneous obstacle Fig 15 , the shaper are quate different trom the inierface-determined shapes doscussed above The structure what of an ndandaal not of an aggereate

Ihere are other struc tures in which a hrine hed irec.libe striacture arives from an invers mechamin n he iest houm n eample s the suciesser manie of mans small wreams io form a sugie large river in brute whids the merging for gether of mans smal \cdot tack to form a stigele sutiace gurs nise to a smilar form tie if

The Role of Histors in Structure

in the appasal proxers amenahle on stads by phovers the small mombet of univimoliad and the vmplatis of their ineractions gita a defanseness and reproducibilut that is eather inn ariatul or wedremendent in a simple was upon tame In other seiences such as biologi or metalliugs, the stnucture of complex mater must be deall with, moniting murtadio of mans and interacting interactions with asoxiations of perfectan and amperfection wi.ach in lo combined in an alriokt infinte bartetion wass 7 he siructures what herit particular study berause ther happen to exist depend almost completel on their hisiors quite as mutb as ders theugh with more diseriti, the giresent human condituon . Nthough: other strur tures might have bren formed with equal a prouri pmhabiats trom the same unts and unit proxesses the whole unique sequence of atomic, wate events that actalls did ixchir. each adding a hute to a presexsting sturture was necessan to give nise to the partictular arras of molecules, cristals or celk th the fimal strmeture * Nehomizh the udeal crisal lature of a substane at equibiotam depends
onlv on ats comporition and t nperat re ath other ayperts of the cencriare of a gisen bit of polioristallane materidepends upon huston te the detals of the nistextuts of indusdual envals, usuallis at ster witere mperter tums of heterogenesties pre-exist in th- matrix. the lixall, barime rate at which the induadationvals grow into thite enurinment, ineneporatine or rejecting matter an a resith of the micro-processeid atom transfer, and the mancer :n whith the envals impinge to produce the eran lomindart as a nes element of structure whech uself change si wipe at at cordance with it propertier and the particuiar lex at keonim. in all resultang frme historical acradents far rie: complea
 orgamizations

In the space-filtine ageregate. the induduah heme each other Thes mat tre arraided randonal or regularic bu,
 ditions of jomere at the ponts where thirer or more firet are dinneo Structure on one level be wimperfe atonsonf tarid. toms, aluavg gien riw in a new hardion strus hate on a harger sale tmersels, than crent thet there is ne de ertable structure without wome underbiteg sructure on a waller
 fand it I local conf:umetion will stwas have wome con-
 rien part as dependeat on the whole ind wa wersa

On Sectoms and Surfaces

The structures momall obereat on metal and roxks ase those of a plane sectuon rit through athricedmemoon!
 at vartous angles. and thus antrodating datortoon of thape and hiding ennner beins that mas cast withe thitl dimension We hase terome sen adegit al interpreting thinks form iwodimenstonal representitioni inited most of estr the hing to in such verms ithe modomencomal sutface of a patintig can represent a strathe or distoried propection or a point-peryperase wew of rither real or imagenars thanes In sualpure, the surface can be the totural surface of an object, but it usualls, e through a boxk of matertal which has a threedunemo. ial structure and it reseak at surface texture with th own arethene qualizes bertions are

subth different from the same structures when formed aganst a real surface compate Fip 4 of the real curface of a pohenstalline metal with Fie 3 of a section in the former the angles are nearls all at 120 . whale the latter has a pleasing disersus Sectuoning is simpler than other inosdimensonal representation berause there is no superpostion as in projection and no change of scale as in peripective it ques 2 single-c! vation contour map, with volumes reduced to areas, surfaces to lines, and lines to ponss If the structure is celluiar and randomk onented. representations of alf possible wews will be seen at wanous placer in the section Dependirez on the orientation certain features will be maznifird th one direcion Conserals of concabre of a sur. face in relation to the sectioning plane producer c losea : wila. tan or extended connectisat of the hnear traces on th the efructure ts not random, but irregularli iamellar as the grain of a tree the varamons m the therd dintenuon canbe seen as a dictribution of evefure in the ewe-dimencoonal sher bome example in wheh sach etructures are explois dare wrexieenere ievibies marhied ceramost the Damascus sword Fig 17 and Japanese words and pseba t:q 18 I hese all owe much of their charm to the suggestion of combined d sien and tex'ure that ther displas. with effects not unlike those of woven erviler hut more natural in ongin and with threedimers onal overiones

Conclusion

Do not thes simple structures of enstals and the ampler
 of the worid and our apprecintuon of at actheticall, as wellas intellectualls) It is the (hunese pnencipal of zone and sin. balanced pootue and neqative druaions from uniformith, whek if occurring at mans places mose fom a foam sirnc. iure of cells no matier what materialspace or idea-space is invoin ed I he freedom of a cerictuial unit infliets and cuffere cons:ratnts wheneter tis closer tnteraction with wome neighbork makes coriperition wht others less cass Social order intencifirs the metefacial enown aqaine a differentliondered group Ewerithing that we can se reenthme that we ean understand is related ondructure and asthe fiestall prochole wh have so beatuftall shown perceptasn stself wis in pat tems not fragments lil anareneweremental activis seems winvole the conipancon of a cenced or thoughe patiem with a precervang one a patiem formed in the bratis phucal serierture bs bobegucal inherteance and the umprint of experience (ould ut be that iesthetir enjoment w the rewit;
of the fermation of a hind of moirt pattern between a newls sensed experience and the old. between the different parte of a sensed pattern transposed in space and in onentation and with , anations in scale and time b, the manelous properties of the brain' The paris of a senced whole form mant patterns sugereting each other in sarving scale and aspect, with patierns of impeifection and disorder of one kind forming the partalls ordered framenork of another wth an almos: magical disersur depending on the degree to wheh local dewanous from the ideal pattern are averaged ont Somehow the brain percenes the relationship and actuely enjow the nich interplat possible in paterns composed of the sumplest parts. an interplat hetween local and long-range. betwenn branching citension and consoldation, between substance and surface, beeween order and disorder

The wen nature of life spatiern-matching, whether in the smple acceptance or rejection of "food" unts to fit the RX' molectiles withen a crll or the joming rogether of (raforming and differentiased celle in the overall pateen of the organism which the parts themelies both dictate and contorm to Thegrowthoforsei d but lifelessmaterispicalls occur b the addition of atoms or molecules to the ven surface of a crestal 4 not dissmilar process of structural matchne is insolved in the duplication of proten within a lime cell, but a completc organion grous br internal multiplication, and the consequent burgeroneng of outward movement produces the differing envirouments for celle whech is an escental charactenstic of a lising organem

There is a kind of indetermin. ics quite different in essence frem the famous pronciple of Henenbere but just as cifective in haming our knowledge of nature , wheh lies in the fact that w can nether consimush sense nor think of wen muthat ams one mome it 1 nderstanding canonls rome from a roxing wewpont and sequential changes in the scale at attentien lhe current precison in setence will hant its whanse unless a way ean be found for relating different but merwosen seates and dimeticions

Ihe elmmation of the ext-aneous, in both experiment and theors has been the veritable hass of all seientific adwatice sume the scienternth renturs, and has ied ue to a ponine where practicalls coerithang aboue the atom is under-
 adsance will have exhausied the supply of problems that musise ouls those aspects of nature that can be frechly studied ir simple solation The great need now is for concern with sictens of greater complexith, for methods of dealing with complieated nature as it exists the artist has long heen
making meaningful and communicable statements, if not alwass pricise ones, about compler things If new methods, which will surel owe somethang to aesthetios, should enable the surntist to mose into more complex fields, fis area of interest will approarh that of the humamst, and science mas cien once nore blend smoothly into the whole range of human actsits

Fix 1; Detail of a Damascus sword blade from the Wallace Collecuon. Lendon The surface of the blade haci bein formed bu cutiong through the irregular laminar ctrurfure which ongmated in the criciallization of the high cation cterel and had mamtaned
 Hallare Collection, London)

Fig 18 . I Japanese. jume cwordguard from the collectien of (; F Heari lthe texture arien from the inemional incorporation of innumerable lasers of dighth different steck ilto a ompie mace b) repmited weldang and forgine and then ehemicull etchune the tital curf we which was cut through the forged lameliae The moon ic inladt of alser hatural size

The Island of Research

Ernest Harburg

Following the discovery of the electron it was clear that a complete revision of atomic theory was required. The atom could no longer be regarded as the ultimate unit of matter because Thomson's experiments had shown that, regardless of the gases used to produce the cathode ray discharge, the same subatomic particle, the electron, always appeared. Since this particle carries a negative electric charge and the atom as a whole is uncharged, questions immediately arose as to the number of electrons per atom, the nature of the positive charge, and the spatial relation of the latter to the electron or electrons present.
The very small electronic mass determined by Thomson's experiments, approximately $1 / 1,000$ the mass of the hydrogen atom, at first suggested that the hydrogen atom might contain some 1,000 electrons. This contemporary thinking was clearly set forth in the closing pages of Rutherford's book, Radioactive Transformations, published in 1906. Rutherford points out that atom models had already been suggested, the first by Lord Kelvin.
Kelvin proposed, in 1902, an atom model consisting of a sphere of uniformly distributed positive electricity in which discrete electrons were embedded so that equilibrium was obtained when these charges were at rest. A year later J. J. Thomson published calculations on the stability of a model in which electrons, arranged uniformly around a circle within the positive sphere, rotated at high speed. A further paper by Thomson appeared early in 1904, which reexamined Kelvin's static atom nodel at considerable length. Much of this paper, with additions, appeared in Thomson's book, The Corpuscular Theory of Matter, published in 1907; our excerpt is from this book. Here static electrons are placed one by one in a positive sphere and the stability is examined. Somehow Kelvin's pro-
prietary claim to this atomic scheme was lost, so that in later years the arrangement became known as "the Thomson atom."

But while Thomson was examıning, and elaborating the original Kelvin scheme, Kelvin himself went on to other and more complicated models. Finally, in December 1905, he proposed a Boscovichian atom that had alternating shells of "vitreous and resinous" electricity with "the total vitreous greater than the resinous." The electrons were embedded in the vitreous (positive) shells, and could therefore, if unstable, be ejected with varying speeds as demanded of electrons issuing from radioactive atoms. Still another model, proposed in 1904, was that of Nagaoka, who, harking back to Maxwell's paper on Saturn's rings, suggested that the atom might consist of a number of electrons revolving with nearly the same velucity in a ring about a positively charged center. Rutherford noted this suggestion in his famous paper of 1911, in which he proposed the nuclear atom. All of these atom models had varying degrees of plausibility; they would account qualitatively for various atomic properties but not for all. Thomson, however, was perhaps most persistent in his search for a model that would give both qualitative and some quantitative agreement with experiment.
Suppose one begins with the question: How many electrons are there per atom? Thomson obtained an answer to this question from several sources. The first came from experiments on the scattering of electrons made to pass through thin sheets of metal. (Lenard, for instance, had shown some years previously that cathode rays can pass through thin metal windows and ionize the air outside the tube in which they were generated.) By comparing a computed value of electron scattering with that observed experimentally, Thomson found that the number of electrons per atom needcd to produce the observed scattering should be approximately the same as the atomic weight of the scattering material assuming unit atomic weight for hydrogen. (Except for hydrogen, this result was approximately two times too large.) The second source of information was the dispersion of light by hydrogen. Here a calculation showed that the number of dispersion electrons per atom of hydrogen must be closely equal to unity. The third source was X-ray scattering experiments. When a beam of X-rays passes through matter, the atoms both absorb and scatter the rays; hence, the amount transmitted decreases as the thickness of the material increases. From early X-ray scattering measurements the number of electrons per atom was found to be of the order of the atomic weight. Later, more accurate measurements by Barkla showed that for the light atoms, except hydrogen, it was more nearly half the atornic weight. As a consequence of all this evidence, it was apparent that hydrogen, the least massive of all the atoms, consisted probably of one electront. and an equal amount of positive charge. Heavier atoms were
presumably obtained by adding one electron for every unit of positive charge.

Results from kinetic theory had shown that the dameter of an ater was of the order of $10^{-8} \mathrm{~cm}$ From the scattering experiments it was known that an electron was not much deflected by passing through thin foils many atoms thick, so the conclusion was reached that the "density" of positive charge must be low. According!y. Thomson, in making a model for hydrogen, the simplest atom, had some basis other than Kelvin's proposal for assuming that positive charge, equal to that of the electron, occupied the whole atomic volume with uniform density.

Having made these tentative chorces, the question of stability demanded examination. Where was the electron in such an atom? Elementary electrical theory shows that if the electron is assumed to be at the center of the positive sphere, any displacement of it will result in vibrations about the center. These would continue indefinitely if the electron did not lose energy: but since a vibratory motion about the center is an accelerated motion, and classical electromagnetic theory required that accelerated electrons must radiate energy, the electron would naturally be brought to rest. Hence, the undisturbed atom would be a static atom, and if disturbed, would produce dynamically stable vibrations, dyng away with time. If the disturbances were sufficiently violent, the electron would be ejected, resulting in a hydrogen ion. All this seemed in accord with experience. But a little further investigation showed that despite its good beginning, the model had at least one serious defect. The radiation emitted by the vibrating electron should, according to theory, consist of light of a single wavelength appropriate to the far-ultraviclet region of the spectrum. Experimentally, one observed quite unaccountably a spectrum in the visible region consisting of several discrete wavelengths. Othe: series of lines also existed in the infrared and ultraviolet.
Despite this defect, Thomson went ahead to examine the stability of the multielection atom. From stability considerations he shows in his paper that, proceeding to the atom containing two electrons, stability is obtained by keeping the size of the sphere of positive electricity constant. As regards the two electrons placed inside the sphere, equilibrium is obtained when they are on a line "irough the center of the sphere and equidistant from it, the distance being half the radius of the sphere. As the number of electrons increases to four, the electrons can no longer be in static equilibrium in a planar arrangement; instead they are located at the corners of a regular tetrahedron. Stable arrangements with greater numbers of electrons up to 100 are then discussed. Thomson was also able to show that the electron arrangements in his scheme of "atom-building" suggested an explanation of the periodic properties of the chemical elements. This section of his paper is not reproduced here.

The stability of experimental configurations, using magnetized needles thrust through corks and floated on water, iron spheres floating on mercury, and elongated conductors floating vertically in water, is then briefly noted as a result of the work of other investigators. These experiments support the idea that a number of corpuscles, if confined to a plane, will arrange themseives in a series of rings as Thomson's calculations indicated.

One of the main props for the Thomson atom was its support of α-par-ticle-scattering experiments. It is ironic that this aspect of his model on closer investigation led to its downfall!

00000000

THOMSON

The Arrangement of Corpuscles in the Atom ${ }^{\text { }}$

We have sefn that corpuscles are always of the same kind whatever may be the nature of the substance from which they originate; this, in conjunction with the fact that their mass is much smaller than that of any known atom, suggests that they are a constituent of all atoms; that, in short, corpuscles are an essential part of the structure of the atoms of the different elements. This consideration makes it important to consider the ways in which groups of corpuscles can arrange themselves so as to be in equilibrium. Since the corpuscles are all negatively electrified, they repel each other, and thus, unless there is some force tending to hold them together, no group in which the distances between the corpuscles is finite can be in equilibrium. As the atoms of the elements in their normal states are electrically neutral, the negative electricity on the corpuscles they contain must be balanced by an equivalent amount of positive electricity; the atoms must, along with the corpuscles, contain positive electricity. The form in which this positive electricity occurs in the atom is at present a matter about which we have very little information. No positively electrified body has yet been found having a mass less than that of an atom of hydrogen. All the positively elecrrified systems in gases at low pressures seem to be atoms which, neutral in their normal state, have become positively charged by losing a corpuscle. In

[^1]```
The: lmommsum Almm.
```

default of exact knowledge of the nature of the way in which positive electricity occurs in the atom, we shall consider a case in which the positive electricity is distributed in the way most amenable to mathematical calculation, i.e., when it occurs as a sphese of uniform density, throughout which the corpuscles are distributed. The positive electricity attracts the corpuscles to the centre of the sphere, while their mutual repulsion drives them away from it; when in equilibrium they will be distributed in such a way that the attraction of the positive electrification is balanced by the repulsion of the other corpuscles.

Let us now consider the problem as to how $1 \ldots 2 \ldots 3 \ldots n$ corpuscles would arrange themselves if placed in a sphere filled with positive electrucity of uniform density, the total negative charge on the corpuseles being equivalent to the positive charge in the sphere.

When there is unly one corpuscle the solution is very simple: the corpuscle will evidently go to the centre of the sphere. The potential energy possessed by the different arrangements is a quantity of considerable importance in the theory of the subject. We shall call $Q$ the amount of work required to remove each portion of electricity to an infinite distance from its nearest neighbour; thus in the case of the single corpuscle we should have to do work to drag the corpuscle out of the sphere and then carry it away to an infinite distance from it; when we have done this we should be left with the sphere of positive electricity, the various parts of which would repel each other; if we let these parts recede from each other until they were infinitely remote we should gain work. The difference between the work spent in removing the negative from the positive and that gained by allowing the positive to scatter is $Q$ the amount of work required to separate completely the electrical charges. When there is only one corpuscle we can easily show that

$$
Q=\frac{9}{10} e^{2},
$$

where $e$ is the charge on a corpuscle measured in electrostatic units and $a$ is the radius of the sphere.
When there are two corpuscles inside a sphere of positive electricity they will, when in equilibrium, be situated at two points $A$ and $B$, in a straight line with $O$ the center of the sphere and such that

$$
O A=O B=\frac{a}{2}
$$

where $a$ is the radius of the sphere. We can easily show that in this position the repulsion between $A$ and $B$ is just balanced by the attraction of the positive electricity and also that the equilibrium is stable. We may point
out that $A B$ the distance between the corpuscles is equal to the radius of the sphere of positive electrification. In this case we can zhuw that

$$
Q=\frac{21}{10} \frac{e^{2}}{a}
$$

Thus if the radius of the sphere of positive electrification remained constant, $Q$ for a system containing two corpuscles in a single sphere would be greater than $Q$ for the arrangement in which each corpuscle is placed in a sphere of positive electrification of its own, for in the latter case we have seen that

$$
Q=2 \times \frac{9}{10} \frac{e^{2}}{a}
$$

and this is less than

$$
\frac{21}{10} \frac{e^{2}}{a}
$$

Thus the arrangement with the two corpuscles inside one sphere is more than that where there are two spheres with a single corpuscle inside each: thus if we had a number of single corpuscles each inside its own sphere, they would not be so stable as if they were to coagulate and form systems each containing more than one corpuscle. There would therefore be a tendency for a large number of systems containing single corpuscles to form more complex systems. This result depends upon the assumption that the size of the sphere of positive electrification for the system containing two corpuscles is the same as that of the sphere containing only one corpuscle. If we had assumed that when two systems unite the volume of the sphere of positive electricity for the combined system is the sum of the volumes of the individual systems, then $a$ for the combined system would be $21 / 3$ or $1 \cdot 25$ times $a$ for the single system. Taking this into account, we find that $Q$ for the combined system is less than the sum of the values of $Q$ for the individual system; in this case the system containing two corpuscles would not be so stable as two systems each contanning one corpuscle, so tha! the adency now would be towards dissociation rather than association.
Three corpuscles inside a single sphere will be in stable equilibrium when at the corners of an equilateral triangle whose centre is at the centre of the sphere and whose side is equal in length to the radius of that sphere; thus for three as for two corpuscles the equilibrium position is determined by the condition that the distance between two corpuscles is equal to the radius of the sphere of positive electrification.

For the case of threc corpuscles $Q=\frac{36}{10} \frac{e^{2}}{a}$, and thus again we see that if the radius of the sphere of positive electricity is invariable, the arrangement with three corpuscles inside one sphere is more stable than three single corpuscles each inside its own sphere, or than one corpuscle inside one sphere and two corpuscles inside another sphere; thus again the tendency would be towards aggregation. If, however, the positive electricity instead of being invariable in size were invariable in density, we see that the tendency wou! : be for the complex system to dissociate into the simpler ones.

Four corpuscles if at rest cannot be in equilibrium when in one plane, although the co-planar ar:angement is possible and stable when the four are in rapid rotation. When there is no rotation the corpuscles, when in stable equilibrium, are arranged at the corners of a regular tetrahedron whose centre is at the centre of the sphere of positive electrification and whose side is equal to the radius of that sphere; thus we again have the result that the distance between the corpuscles is equal to the radius of the positive sphere.

For four corpuscles

$$
Q=\frac{e^{2}}{a} \frac{54}{10}
$$

We see that the values of $Q$ per corpuscle are for the arrangements of $1,2,3,4$ corpuscles in the proportion of $6: 7: 8: 9$ if the radius of the positive sphere is invariable.

Six corpuscles will be in stable equilibrium at the corners of a regular octahedron, but it can be shown that the equilibrium of eight corpuscles at the corners of a cube is unstable. The general problem of finding how $n$ corpuscles will distribute themselves inside the sphere is very complicated, and I have not succeeded in solving it; we can, however, solve the special case where the corpuscles are confined to a plane passing through the centre of the sphere, and from the results obtained from this solution we may infer some of the properties of the more general distribution. The analytical solution of the problem when the motion of the corpuscles is confined to one plane is given in a paper by the author in the Philosophical Magazine for March, 1904; we shall refer to that paper for the analysis and quote here only the results.

If we have $n$ corpuscles arranged at the corners of a regular polygon with $n$ sides with its centre at the centre of the sphere of positive electrification, each corpuscle being thus at the same distance $r$ from the centre of this sphere, we can find a value of $r$, so that the repulsion exerted by the ( $n-1$ ) corpuscles on the remaining corpuscle is cqual to the attraction
of the positive electricity on that corpusele; the ring of corpuscles would then be in equilibrium. But it is shown in the paper referred to that if $n$ is greater than 5 the equilibrium is unstable and so cannot exist; thus 5 is the greatest number of corpuscles which can be in equilibrium as a single ring It is shown, however, that we can have a ring containing more than five corpuscles in equilibrium if there are other corpuscles inside the ring. Thus, though a ring of six corpuscles at the corners of a regular hexagon is unstable by itcelf, it becomes stable when there is another corpuscle placed at the centre of the hexagon and rings of seven and eight corpuscles are also made stable by placing one corpuscle inside them. To make a ring of nine corpuscles stable, however, we must have two corpuscles inside it, and the number of corpuseles required inside a ring to keep it stable increases very rapidly with the number of corpuscles in the ring. This is shown by [Table 37-1], where $n$ represents the number of corpuscles in the ring and $i$ the number of corpuscles which must be placed inside the ring to keep it in stable equilibrium.

TABLE 37-1

| $n$ | 5. | 6. | 7. | 8. | 9. | 10. | 12. | 13. | 15. | 2 | 30. | 40. |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $i$ | 0. | 1. | 1. | 1. | 2 | 3. | 8. | 10. | 15. | 39. | 101. | 232 |

When $n$ is large $i$ is pioportional to $n^{3}$. We thus see that in the case when the corpuscles are confined to one plane they will arrange themselves in a series of concentric rings.
[Thomson then gives the details of the calculation by which the equilibrium of a number of corpuscles in a planar arrangement may be calcu. lated-Editors.]
[Table 37-2] giving the various rings for corpuscles ranging in number from 1 to 100 has been calculated in this way; the first row contains the numbers for which there is only one ring, the second those with two rings, the third those with three, and so on.

We can investigate the equilibrium of corpuscles in one plane by experiment as well as by analysis, using a method introduced for a different purpose by an American physicist, Professor Mayer. The problem of the arrangement of the corpuscles is to find how a number of bodies which repel each other with forces inversely proportional to the square of the distance between them will arrange themselves when under the action of an attractive force tending to drag them to a fixed point. For the experimental method the corpuscles are replaced by magnetised needles pushed through cork discs and floating on water. Care should be taken that the needles are equally magnetised. These needles, having their polws all pointing in the same way, repel each other like the corpuscles. The attractive

TABLE A7-2
NUMBERS OF CORPUSCleS IN ORDER
$123+5$
$\begin{array}{llllllll}5 & 6 & 7 & 8 & 8 & 8 & 910101011\end{array}$
$\begin{array}{lll:llllll}1 & 1 & 2 & 3 & 3 & 4 & 5\end{array}$
111111121212131313131314141515
$\begin{array}{llllllllll}5 & 6 & 7 & 7 & 8 & 3 & 8 & 8 & 9101010101011\end{array}$
$\begin{array}{lllllllllllllll}1 & 1 & 1 & 1 & 2 & 3 & 3 & 3 & 4 & 4 & 5 & 5 & 5\end{array}$
1515151616161616161617171717171717
$1111111112121213131313131314!41515$
$\begin{array}{llllllllllllll}5 & 6 & 7 & 7 & 7 & 8 & 8 & 8 & 8 & 9 & 9101010101011\end{array}$
$\begin{array}{lllllllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 2 & 2 & 3 & 3 & 3 & 3 & 4 & 4 & 5 & 5 & 5\end{array}$
171818181818191919192020202020202020202121
151515151616161616161616161717171717171717
111111111112121212131313131313131414151515

$\begin{array}{lllllllllllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 3 & 3 & 3 & 3 & 4 & 4 & 5 & 5 & 5 & 5\end{array}$
212121212121212122222222222222222323232323232324
171818181818191919191920202020202020202020212121
$151515151616161616!61616161617171717171717171717$
111111111112121212121313131313131313141415151515

$\begin{array}{llllllllllllllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 2 & 2 & 3 & 3 & 3 & 3 & 3 & 4 & 4 & 5 & 5 & 5 & 5 & 5\end{array}$
24242424242424
21212121212121
17181818181819
15151515161616
11111111111212
$\begin{array}{lllllll}5 & 5 & 6777\end{array}$
1111111
force is produced by a large magnet placed above the surface of the water, the lower pole of this magnet being of the opposite sign to that of the upper poles of the floating magnets. The component aiong the surface of the water of the force due to this magnet is directed to the point on the surface vertically below the pole of the magnet, and is approximately proportional to the distance from this point. The furces acting on the magnets are thus analogous to those acting on the corpuscles.

If we throw needle after needle into the water we shall find that they will arrange themselves in definite patterns, three needles at the corners
of a triangle, four at the corners of a square, five at the corners of a pentagon; when, however, we throw in a sixth needle this sequence is broken; the six needles do not arrange themselve, at the corners of a he:agon but five go to the corners of a pentagon and one goes to the middle. When we throw in a seventin needle we get a ring of six with one at the centre; thus a ring of six, though unstable when hollow, becomes stable as soon as one is put in the inside This is an example of a fundamental principle in the stable configurations of corpuscles; the structure must be substantial; we cannot have a great display of corpuscles on the outside and nothing in the inside. If, however, we have a goed foundation of cor-puscles-if, for example, we tie a considerable number of needles together for the inside-we can have a ring containing a large number of corpuscles in stable equilitrium around it, although five is the greatest number of corpuscles that can be in equilibrium in a hollow ring. By the aid of these floating magnets we can illustrate the configurations for considerable numbers of corpuscles, and verify [Table 37-2].

Another method, due to Professor R. W Wood, is to replace the magnets floating on water by iron spheres floating on mercury; these spheres get magnetised by induction by the large magnet placed above them and repel each other-though in this case the repulsive force does not vary inversely as the square of the distance-while they ate attracted by the external magnet; the iron spheres arrange hemselves in patterns analogous to those formed by the magnets. Dr. Monckman used, instead of magnets, elongated conductors floating vertically in water; these were electrified by induction by a charged body held above the surface of the water; the conductors, being similarly electrified, repelled each other and were attracted towards the electrified body; under these forces they formed patterns similar to those formed by the floating magnets.

We sec from this experimental illustration, as well as by the analytical investigation, that a number of corpuscles will, if confined to one plane, arrange themselves in a series of rings, the number of corpuscles in the ring increasing as the radius of the ring increases.

If we refer to the arrangements of the different numbers of corpuscles [see Table 37-2], we see that the numbers which come in the same vertical columns are arranged in patterns which have much in common, for each arrangement is obtained by adding another storey to the one above it. Thus, to take the first column, we have 'he pattern 5,1 , the one below it is $11,5,1$; the one below this $15,11,5,1$; the one telow this $17,15,11,5$, 1 ; then $21,17,15,11,5,1$; and then $24,21,17,15,11,5,1$. We should expect the properties of the atoms formed of such arrangements of corpuscles to have mary points of esemblance. Take, for example, the vibrations of the corpuscles; these may be divided into two sets. The first set consists of those arising from the rotation of the corpuscles around their
orbits. If all the corpuscles in an atom have the same angular velocity, the frequency of the vibrations produced by the rotation of the ring of corpuscles is proportional to the number of corpuscles in the ring; and thus in the spectrum of each of the elements corresponding to the arrangements of corpuscles found in a vertical column in [Table 37-2], there would be a series of lines whose frequencies would be in a constant ratio to each other, this ratio being the ratio of the numbers of corpuscles in the various rings.


Fig. 37-1.
The second set of vibrations are thoie correspending to the displacement of a ring from its circular shape. If the distance of a corpuscle from the nearest member in its own ring is s.nall compared with its distance from its nearest neighbour on another ring, the effect of the outer ring will only "disturb" the vib .ions of the ri, g without altering their fundamental character. Thus we sitould expect the various elements in a vertical column to give correspor.ing groups of associated lines. We might, in short, expect the various eiements corresponding to the arrangements of the corpuscles contained in the same vertical column, to have many properties, chemical as well as physical, in common. If we suppose that the atomic weight of an element is proportional to the number of corpuscles contained in its atom,-and we shall give later on evidence in favour of this view,-we may regard the similarity in properties of these arrangements of corpuscles in the same vertical column as similar to a very striking property of the chemical elements, i.e., the property expressed by
the periodic law. We know that if we arrange the elements in the order of their atomic weights, then as we proceed to consider the elements in this order, we come across an element-say lithium-with a certain property; we go on, and after passing many elements which do not resemble lithium, we come to another, sodium, having many properties in common with lithium; then, as v.e go on we lose these properties for a time, coming across them again when we arrive at potassium, and so on. We find here just the same recurrence of properties at considerable intervals that we should get if the atoms contained numbers of corpuscles proportional to their atomic weight. Consider a series of atoms, such 1 l. $\because \because$ atom of the $p$ th member is formed from that of the $(p-1)$ th by $u_{\text {d }}$ ddition of a single ring. i.e., is a compound, so to speak, of the $(p-1)$ th atom with a fresh ring. Such a series would belong to elements which are in the same group according to the periodic law, i.e., these elements form a series which. if arranged according to Mendeléef's table would all be in the same vertical column [The remainder of the paper discusses the stability and electrochemical properties of atoms starting with 20 corpuscles in the outer ring and 59 or more in the inner ring-Editors.]

## Einstein

Icame to princeton on a Saturday, lived through a dead Sunday and entered the office of Fine Hall on Monday, to make my first acquaintances. I asked the secretary when I could see Einstein. She telephoned him, and the answer was:
"Professor Einstein wants to see you right away."
I knocked at the door of 209 and heard a loud "berein." When I opened the door I saw a hand stretched out energetically. It was Einstein, looking older than when II had met him in Berlin, older than the elapsed sixteen years should have made him. His long hair was gray, his face tired and yellow, but he had the same radiant deep eyes. He wore the brown leather jacket in which he has appeared in so many pictures. (Someone had given it to him to wear when sailing, and he had liked it so well that he dressed in it every $\mathrm{d}_{\mathrm{i}} . j$.) His shirt was without a collar, his brown trousers creased, and he wore shecs without socks. I expected a brief private conversation, questions about my crossing, Europe, Born, etc. Nothing of the kind:
"Do you speak German?"
"Yes," I answered.
"Perhaps I can tell you on what I am working."
Quietly he took a piece of chalk, went to the blackboard and started to deliver a perfect lecture. The calmness with which Einstein spoke was striking. There was nothing of the restlessness of a scientist who, explaining the problems with which he has lived for years, assumes that they are equally familiar to the listener and proceeds quickly with his exposition. Before going into details Einstein sketched the philosophical background for the problems on which he was working. Walking slowly and with dignity around the room, going to the blackboard from time to time to write down mathematical equations, keeping a dead pipe in his mouth, he formed his sentences perfectly. Everything that he said could have been printed as he said it and every sentence would make perfect sense. The exposition was simple, profound and clear.

I listened carefully and understood everything. The ideas behind Einstein's papers are aways so straightforward and fundamental that I believe I shall be able to express some of them in simple language.

There are two fundamental concepts in the development of physics: field and matter. The old physics which developed from Galileo and Newton, up to the middle of the nineteenth
century, is a physics of matter. The old mechanical point of view is based upon the belief that we can explain all phenomena in nature by assuming particles and simple forces acting among them. In mechanics, while investigating the motion of the planets around the sun, we have the most triumphant model of the old view. Sun and planets are treated as particles, with the forces among them depending only upon their relative distances. The forces decrease if the distances increase. This is a typical model which the mechanist would like to apply, with some unessential changes, to the description of all physical phenomena.
A container with gas is, for the physicist, a conglomeration of small particles in haphazard motion. Here-from the planetary system to a gas-we pass in one great step from "macrophysics" to "microphysics," from phenomena accessible to our immediate observation to phenomena described by pictures of particles with masses so small that they lie beyond any possibility of direct measurement. It is our "spiritual" picture of gas, to which there is no immediate access for our senses, a microphysical picture which we are forced to form in order to understand experience.
Again this picture is of a mechanical nature. The forces among the particles of a gas depend only upon distances. In the motions of the stars, planets, gas particles, the human mind of the nineteenth century saw the manifestation of the same mechanical view. It understood the world of sensual impressions by forming pictures of particles and assuming simple forces acting among them. The philosuphy of nature from the beginning of physics to the nineteenth century is based upon the belief that to understand phenomena means to use in their explanation the concepts of particles and forces which depend only upon distances.
To understand means always to reduce the complicated to the simple and familiar. For the physicists of the nineteenth century, to explain meant to form a mechanical picture from which the phenomena could be deduced. The physicists of the past century believed that it is possible to form a mechanical picture of the universe, that the whole universe is in this sense a great and complicated mechanical system.

Through slow, painful struggle and progress the mechanical view broke down. It became apparent that the simple concepts of particles and forces are not sufficient to explain all phenomena of nature. As so often happens in physics, in the time of need and doubt, a great new idea was born: that of the field. The old theory states: particles and the forces between them are the basic concepts. The new theory states: changes in space, spreading in time through all of space, are the basic concepts of our descriptions. These basic changes characterize the field.
Electrical phenomena were the birthplace of the field concept. The very words used in talking about radio waves-sent, spread, received-imply changes in space and therefore field. Not particles in certain points of space, but the whole continuous space forms the scenery of events which change with time.
The transition from particle physics to field physics is undoubtedly one of the greatest, and, as Einstein believes, the greatest step accomplished in the history of human thought. Great courage and imagination were needed to shift the responsibility for physical phenomena from particles into the previously empty space and to formulate mathematical equations describing the changes in space and time. This great change in the history of physics proved extremely fruifful in the theory of electricity and magnetism. In fact this change is mostly responsible for the great technical development in modern times.

We now know for sure that the old mechanical concepts are insufficient for the description of physical phenomena. But are the field concepts sufficient? Perhaps there is a still more primitive question: I see an object; how can I understand its existence? From the point of view of a mechanical theory the answer would be obvious: the object consists of small particles held together by forces. But we can look upon an object as upon a portion of space where the field is very intense or, as we say, where the energy is especially dense. The mechanist says: here is the object localized at this point of space. The field physicist says: field is everywhere, but it diminishes outside this portion so rapidly that my senses are aware of it only in this particular portion of space.

Basically, three views are possible:
i. The mechanistic: to reduce everything to particles and forces acting among them, depending only on distances.
2. The field view: to reduce everything to field concepts concerning continuous changes in time and space.
3. The dualistic view: to assume the existence of both matter and field.

For the present these three cases exhaust the possibilities of a philosophical approach to basic physical problems. The past generation believed in the first possibility. None of the present generation of physicists believes in it any more. Nearly all physicists accept. for the present, the third view, assuming the existence of both matter and field.

But the feeling of beauty and simplicity is essential to all scientific creation and forms the visia of future theories; where does the development of science lead? Is not the mixture of field and matter something temporary, accepted only out of necessity because we have not yet succeeded in forming a consistent picture based on the field concepts alone? Is it possible to form a pure field theory and to create what appears as matter out of the field?

These are the basic problems, and Einstein is and always has been interested in basic problems. He said to me once:
"I am really more of a philosopher than a physicist."
There is nothing strange in this remark. Every physicist is a philosopher as well, although it is possible to be a good experimentalist and a bad philosopher. But if one takes physics seriously, one can hardly avoid coming in contact with the fundamental philosophic questions.

General relativity theory (so called in contrast to special relativity theory, developed earlier by Einstein) attacks the problem of gravitation for the first time since Newton. Newton's theory of gravitation fits the old mechanical view perfectly. We could say more. It was the success of Newton's theory that caused the mechanical view to spread over all of physics. But with the triumphs of the field theory of physics a new task appeared: to fit the gravitational problem into the new field frame.

This is the work which was done by Einstein. Formulating the equations for the gravitational field, he did for gravitational theory what Faraday and Maxivell did for the theory of electricity. This is of course only one aspect of the thecry of relativity and perhaps not the most important one, but it is a part of the orincipal problems on which Einstein has worked for the last few years and on which he is still working.

Einstein finished his introductory remarks and told me why he did not like the way the problem of a unitary field theory had been attacked by Born and me. Then he told me of his unsuccessful attempts to understand matter as a concentration of the field, then about his theory of "bridges" and the difficulties which he and his collaborator had encountered while developing that theory during a whole year of tedious work.
At this moment a knock at the door interrupted our conversation. A very small, thin man of about sixty entered, smiling and gesticulating, apologizing vividly with his hands, undecided in what language to speak. It was Levi-Civita, the famous Italian mathematician, at that time a professor in Rome and invited to Princeton for half a year. This small, frail man had refused some years before to swear the fascist oath designed for university professors in Italy.
Einstein had known Levi-Civita for a long time. But the form in which he grected his old friend for the first time in Princeton was very similar to the way he had greeted me. By gestures rather than words Levi-Civita indicated that he did not want to disturb us, showing with both his hands at the door that he could go away. To emphasize the idea he bent his small body in this direction.
It was my turn to protest:
"I can easily go away and come some other time."
Then Einstein protested:
"No. We can all talk together. I shall repeat briefly what I said to Infeld just now. We did not go very far. And then we can discuss the later part."

We all agreed readily, and Einstein began to repeat his introductory remarks more briefly. This time "English" was chosen
as the language of our conversation. Since I had heard the first part before, I did not need to be very attentive and could enjoy the show, I could not help laughing. Einstein's English was very simple, containing about tiree hundred words pronounced in a peculiar way. He had picked it up without having learned the language formally. But every word was understandable because of his quietness, slow tempo and the distinct, attractive sound of his voice. Levi-Civita's English was much worse, and the sense of his words melted in the Italian pronunciation and vivid gestures. Understanding was possible between us only because mathematicians hardly need words to understand each other. They have their symbols and a few technical terms which are recognizable even when deformed.
I watched the calm, impressive Einstein and the small, thin, broadly gesticulating Levi-Civita as they pointed out formulac on the blackboard and talked in a language which they thought to be English. The picture they made, and the sight of Einstein pulling up his baggy trousers every few seconds, was a scene, impressive and at the same time comic, which I shall never forget. I tried to restrain myself from laughing by saying to myself:
"Here you are talking and discussing physics with the most famous scientist in the world and you want to laugh because he does not wear suspenders!" The persuasion worked and I managed to control myself just as Einstein began to talk about his latest, still unpublished paper concerning the work done during the preceding year with his assistant Rosen.

It was on the problem of gravitational waves. Again I believe that, in spite of the highly technical, mathematical character of this work, it is possible to explain the basic ideas in simple words.

The existence of electromagnetic waves, for example, light waves, X rays or wireless waves, can be explained by one theory embracing all these and many other phenomena: by Maxwell's equations governing the electromagnetic field. The prediction that electromagnetic waves must exist was prior to Hertz's experiment showing that the waves $d o$ exist.

Gencral relativity is a field theory and, roughly speaking, it does for the problem of gravitation what Maxwell's theory did
for the problem of electromagnetic phenomena. It is therefore apparent that the existence of gravitational waves can be deduced from general relativity just as the existence of electromagnetic waves can be deduced from Maxwell's theory. Every physicist who has ever studied the theory of relativity is convinced on this point. In their motion the stars send out gravitational waves, spreading in time through space, just as oscillating electrons send out electromagnetic waves. It is a common feature of all ficid theories that the influence of one object on another, of one clectron or star on another electron or star, spreads through space with a great but finite velocity in the form of waves. A superficial mathematical investigation of the structure of gravitational equations showed the existence of gravitational waves, and it was always helieved that a more thorough examination could only confirm this result, giving some finer features of the gravitational waves No one cared about a deeper investgation of this subject because in nature gravitational waves, or gravitational radiation, seem to play a very small role. It is different in Maxwell's theory, where the electromagnetic radiation is essential to the description of natural phenomena.

So everyoie believed in gravitational wates. In the previous two years Einstein had begun to doubt their existence. If we investigate the problem superficially, they seem to exist. But Einstein claimed that a deeper analysis flatly contradicts the preyious statement. This result, if true, would be of a fundamental nature. It would reveal something which would asto no every physicist: that field theory and the existence of waves are not as closely coanecied as previously thought. It would show us once more that the first intuition mav be wrong, that deeper mathematical analysis may give us ne and unexpected results quite different from those foreseen when only scratching the surface of gravitational equations.
I was very much interested in this result, though somewhat skeptical. During my scientific career I had learned that you may admire someone and regard him as the greatest scientist in the world but you must trust your own brain still more. Scientife creation would become sterile if results were authoritatively or
dogmatically accepted. Everyone has his own intuition. Everyone has his fairly rigidly determined level of achievement and is capable only of small up-and-down oscillations around it. To know this level, to know one's place in the scientific world, is essential. It is good to be master in the restricted world of your own postibilities and to outgrow the habit of accepting results before they have been thoroughly tested by your mind.

Both Levi-Civita and ! were impressed by the conclusion regarding the nonexistence of graviracional waves, although there was no time to develup the technical methods which led to this conclusion. Levi-Civita indicated that he had a luncheon appointment by gestures so vivid that they made me feel hungry. Einstein asked me to accompany him home, where he would give me the manuscript of his paper. On the way we talked physics. This overdose of science began to weary me and I had difficulty in following him. Einstein talked on a subject to which we returned in our conversations many times later. He explained why he did not find the modern quantum mechanics aesthetically satisfactory and why he believed in its provisional character which would be changed fundamentally by future development.

He took me to his study with its great window overlooking the bright autumn colors of his lovely garden, and his first and only remark which did not concern physics was:
"There is a beautiful view from this window."
Excited and happy, I went home with the manuscript of Einstein's paper. I felt the anticipation of intense emotions which a'ways accompany scientific work: the sleepless nights in which imagination is most vivid and the controlling criticism weakest, the ecstasy of seeing the light, the despair when a long and tedious road leads nowhere; the attractive mixture of happiness and unhappiness. All this was before me, raised to the highest level because I was working in the best place in the world.

The progress of my work with Einstein brought an increasing intimacy between us. More and more often we talked of social problems, politics, human relations, science, philosophy, life and death, fame and happiness and, above all, about the future of science and its ultimate aims. Slowly I came to know Einstein better and better. I could foresee his reactions; I understood his attitude which, although strange and unusual, was always fully ronsistent with the essential features of his personality.
Seldom has anyone met as many people in his life as Einstein has. Kings and presidents have entertained him; everyone is eager to meet him and to secure his friendship. It is comparatively easy to meet Einstein but difficult to know him. His mail brings him letters from all over the world which he tries to antswer as long as there is any sense in answering. But through all the stream of events, the inspact of people and social life forced upon him, Einstein remains lonely, loving solitude, isolation and conditions which secure undisturbed work.
A few years ago, in London, Einstein made a speech in Albert Hall on behalf of the refugee scientists, the first of whom had begun to pour out from Germany all over the world. Einstein said then that there are many positions, besides those in universities, which would be suitable for scientists. As an example he mentioned a lighthouse keeper. This would be comparatively easy work which would allow one to contemplate and to do scientific research. His remark seemed funny to every scientist. But it is quite understandable from Einstein's point of view. One of the consequences of loneliness is to judge everything by one's own standards, to be unable to change one's co-ordinate sys-
tem by putting oneself into someone else's being. I always noticed this difficulty in Einstein's reactions. For him loneliness, life in a lighthouse, would be most stimulating, would free him from so many of the duties which he hates. In fact it would be for him the ideal life. But nearly every scientist thinks iust the opposite. It was the curse of my life that for a long time i was not in a scientific atmosphere, that I had no one with whom to talk physics. It is commonly known that stimulating environment strongly influences the scientist, that he may do good work in a scientific atmosphere and that he may become sterile, his ideas dry up and all his research activity die if his environment is scientifically dead. I knew that put back in a gymnasium, in a provincial Polish town, I should not publish anything, and the same would have happened to many another scientist better than I. But genius is an exception. Einstein could work anywhere, and it is difficult to convince him that he is an exception.
He regards himself as extremely lucky in life because he never had to fight for his daily bread. He enjoyed the years spent in the patent office in Switzerland. He found the atmosphere more friendly, more human, less marred intrigue than at the universities, and he had plenty of time for scientific work.
In connection with the refugee problem he told me that he would not have minded working with his hands for his daily bread, doing something useful like making shoes and treating physics only as a hobby; that this might be more attractive than carning moncy from physics by teaching at the university. Again something deeper is hidden behind this attitude. It is the "religious" feeling, bound up with scientific work, recalling that of the early Christian ascetics. Physics is great and important. It is not quite right to earn moncy by physics. Better to do something different for a living, such as tending a lighthouse or making shoes, and keep physics aloof and clean. Naïve as it may seem, this attitude is consistent with Einstein's character.
I learned much from Einstein in the realm of physics. But what I value most is what I was taught by my contact with him in the human rather than the scientific domain. Einstein is the kindest, most understanding and helpful man in the world. But
again this somewhat commonplace statement must not he taken literally.

The feeling of pity is one of the sources of human kindness. Pity for the fate of our fellow men, for the misery around us, for the zuffering of human beings, stirs our emotions by the resonance of sympathy Our own attachments to life and people, the ties which bind us to the outside world, awaken our emotional response to the struggle and suffering outside ourselves. Put there is also another entirely different source of human kindness. It is the detached feeling of duty based on aloof, clear reasoning. Good, clear thinking leads to kindness and loyalry because this is what makes life simpler, fuller, richer, diminishes friction and unhappiness in our environment and therefore also in our lives. A sound social attitude, helpfulness, friendliness, kindness, may come from both these different sources; to express it anatomically, from heart and brain. As the years passed $r$ learned to value more and more the second kind of decency tinat arises from clear thinking. Too often I have seen how emotions unsupported by clear thought are useless if not destructive.
Here again, as I see it, Einstein represents a limiting case. I had never encountered so much kindness that was so completely detached. Though only scientific ideas and physics really matter to Einstein, he has never refused to help when he felt that his help was needed and could be effective. He wrote thousands of letters of recommendation, gave advice to hundreds. For hours he talked with a crank because the family had written that Einstein was the only one who could cuie lim. Einstein is kind, smiling, understanding, talk tive with people whom he meets, waiting pariently for the moment when he will be left alone to return to his work.
Einstrin wrote about himself:
My passionate interest in social justice and sccial responsibility has always stood in curious contrast to a marked lack of desire for direct association with men and women. I am a horse for single harness, not cut out for tandem or teamwork. I have never belonged wholeheartedly to country or state, to my circle of friends or even to my own fanily. These ties have always been accompanied by a
vague aloofness, and the wish to withdraw into myself incre..s's with the years.
Such isolation is sometimes bitter, but I do not regret being cut off from the understanding and sympathy of other men. I lose something by it, to be sure, but I am comr ensatrd for it in being rendered independent of the customs, opinons and prejudices of others and am not tempted to rest my peace of mind upon such shifting foundations.

For scarcely anyone is fame so undesired and meaningless as for Einstein. It is not that he has learned the bitter taste of fame, as frequently happens, after having desired it. Einstein told me that in his youth he had always wished to be isolated from the struggle of life. He was certainly the last man to have sought fame. But fame came to him, perhaps the greatest a scientist ha; ever known. I often wondered why it came to Einstein. His ideas have not influenced our practical life. No electric light, no telephone, no wireless is connected with his name. Perhaps the only important technical discovery which takes its origin in Einstein's theoretical work is that of the photoelectric cell. But Einstein is cetainly not famous becaus. of this discovery. It is his work on relativity theory which has made his name known to all the civilized world. Does the reason lie in the great influence of Einstein's theory upon philosophical thought? This again cannot be the whole explanation. The latest developments in quantum mechanics. its connection witi determinism and indeterminism, influenced philosophical thought fully as much. But the names of Bohr and Heisenberg have act the glory that is Einstein's. The reasons for the great fame which diffused deeply among the masses of people, most of them remcied from creative scientific werk, incapable of estimating his wrrk, must be manifold and, I believe, sociological in character. The explanation was suggested to me by discussions with one of my friends in England.

It was in 1919 that Einstein's fame began. At this time his great achievement, the structure of the special and general relativity theories, was essentially finished. As a matter of fact it had been completed five years before. One of the consequences of the
general relativity theory may be described as follows: if we photograph a fragment of the heavens during a solar eclipse and the same fragment in normal conditions, we obtain slightly different pictures. The gravitational field of the sun slightly disturbs and deforms the path of light, therefore the photographic picture of a fragment of the heavens will vary somewhat during the solar eclipse from that under normal conditions. Not only qualitatively but quantitatively the theory of relativity predicted the difference in these two pictures. English scientific expeditions sent in 1919 to different parts of the world, to Africa and South America, confirmed this prediction made by Einstein.

Thus began Einstein's great fame. Unlike that of film stars, politicians and boxers, the fame persists. There are no signs of its diminishing; there is no hope of relief for Einstein. The fact that the theory predicted an event which is as far from our everyday life as the stars to which it refers, an event which follows from a theory through a long chain of atstract arguments, seems $\vdots$ irdly sufficient to raise the enthusiasn of the masses. But it did. And the reason must be looked for in the postwar psychology.
It was just after the end of the war. People were weary of hatred, of killing and international intrigues. The trenches, bombs and murder had left a bitter taste. Books about war did not sell. Everyone looked for a new era of peace and wanted to forget the war. Here was something which captured the imagination: human eyes looking from an earth covered with graves and blood to the heavens covered with stars. Abstract thought carrying the human mind far away from the sad and disappointing reality. The mystery of the sun's eclipse and the penetrating power of the human mind. Romantic scenery, a strange glimpse of the eclipsed sun, an imaginary picture of bending light rays, all removed from the oppressive reality of life. One further reason, perhaps even more important: a new event was predicted by a German scientist Einstein and confirmed by English astronomers. Scientists belonging to two warring nations had collaborated again! It seemed the beginning of a new era.

It is difficult to resist fame and not to be influenced by it. But
fame has had no effect on Einstein. And again the reason lies in his internal isolation, in his aloofness. Fame bothers him when and as long as it impinges on his life, but he ceases to be conscious of it the moment he :c left alone. Einstein is unaware of his fame and forgets it when he is allowed to forget it.
Even in Princeton everyone looks with hungry, astonished eyes at Einstein. During our walks we avoided the more crowded streets to walk through fields and along forgotten byways. Once a car stopped us and a middle-aged woman got out with a camera and said, blushing and excited:
"Professor Einstein, will you allow me to take a picture of you?"
"Yes, sure."
He stood quiet for a second, then continued his argument. The scene did not exist for him, and I am sure after a few minutes he forgot that it had ever happened.
Once we went to a movie in Princetor to see the Life of Emile Zola. After we had bought our tickets we went to a crowded waiting room and found that we should have to wait fifteen minutes longer. Einstein suggested that we go for a walk. When we went out I said to the doorman:
"We shall return in a few minures."
Rut Einstein became seriously concerned and added in all innocence:
"We haven't our tickets any more. Will you recognize us?"
The doorman thought we were joking and said, laughing:
"Yes, Professor Einstein, I will."
Einstein is, if he is allowed to be, completely unaware of his fame, and he furnishes a unique example of a character untouched by the impact of the greatest fame and publicity. But there are moments when the aggressiveness of the outside world disturbs his peace. He once told me:
"I envy the simplest working man. He has his privacy."
Another time he remarked:
"I appear to myself as a swindler because of the great publicity about me without any real reason."

Einstein understands everyone beautifully when logic and thinking are needed. It is much less easy, however, where emotions are concerned; it is difficult for him to imagine motives and emotions other than those which are a part of his life. Once he told me:
"I speak to everyone in the same way, whether he is the garbage man or the president of the university."

I remarked that this is difficult for other people. That, for example, when they meet him they feel shy and embarrassed, that it takes time for this feeling to disappear and that it was so in my case. He said:
"I cannot understand this. Why should anyoni be shy with me?"

If my explanation concerning the beginning of Einstein's fame is correct, then there still remains another question to be answered: why does this fame cling so persistently to Einstein in a changing world which scoms today its idols of yesterday? I do not think the answer is difficult.

Everything that Einstein did, everything for which he stood, was always consistent with the primary picture of him in the minds of the people. His voice was always raised in defense of the suppressed; his signature always appen red in defense of liberal causes. He was like a saint with two halos around his head. One was formed of ideas of justice and progress, the other of abstract ideas about physical theories which, the more abstruse they were, the more impressive they seemed to the ordinary man. His name became a symbol of progress, humanity and creative thought, hated and despised by those who spread hate and who attack the ideas for which Einstein's name stands.
From the same source, frorn the desire to defend the oppressed, arose his interest in the Jewish problem. Einstein himself was not reared in the Jewish tradition. It is again his detached attitude of symparhy, the rational idea that help must be given where help is needed, that brought him near to the Jewish problem. Jews have made splendid use of Einstein's gentle attitude. He once said:
"I am something of a Jewish saint. When I die the Jews will take my bones to a banquet and collect money."

In spite of Einstein's detachment I had often the impression that the Jewish problem is nearer his heart than any other social problem. The reason may be that I met him just at the time when the Jewish tragedy was greatest and perhaps, also, because he believes that there he can be most helpful.
Einstein also fully realized the importance of the war in Spain and foresaw that on its outcome not only Spain's fate but the future of the world depended. I remember the gleam that came into his eyes when I told him that the afternoon papers carried news of a Loyalist victory.
"That sounds like an angel's song," he said with an excitement which I had hardi, ever noticed before. Dut two minutes later we were writing down formulae and the external world bad again ceased to exist.
It took me a long time to realize that in his aloofnejs and isolation lie the simple keys leading to an understanding of mary of his actions. I am quite sure that the day Einstein received the Nobel orize he was not in the slightest degree excited and that if he did not sleep well that it was because of a problem which was bothering him and not because of the scientific distinction. His Nobel prize medal, together with many others, is laid aside among papers, honorary degrees and diplomas in the room where his secretary works, and I am sure that Einstein has no clear idea of what the medal looks like.

Einstein tries consciously to keep his aloofness intact by small idiosyncrasies which may seem strange but which increase his freedom and further loosen his ties with the external world. He never reads articles about himself. He said that this helps him to be free. Once I tried to break his habit. In a French newspaper there was an article about Einstein which was reproduced in many European papers, even in Poland and Lithuania. I have never seen an article which was further frem the truth than this one. For example, the author said that Einstein wears glasses, lives in Princeton in one room on the fifth floor, comes to the institute at 7 A.m., always wears black, keeps many of his
technical discoveries secret, etc. The article could be characterized as the peak of stupidity if stupidity could be said to have a peak. Fine Hall rejoiced in the article and hung it up as a curiosity on the bulletin board at the entrance. I thought it so funny that I read it to Einstein. who at my request listened carefully but was little interested and refused to be amused. I could see from his expression that he failed to understand why I found it so funny.
One of my colleagues in Princeton asked me:
"If Einstein dislikes his fame and would like to increase his privacy, why does he not do what ordinary people do? Why does he wear long hair, a funny leather jacket, no socks, no suspenders, no collars, no ties?"
The answer is simple and can easily be deduced from his aloofness and desire to loosen his ties with the outside world. The idea is to restrict his needs and, by this restriction, increase his freedom. We are slaves of millions of things, and our slavery progresses steadily. For a week I tried an electric razor-and one more slavery entered my life. I dreaded spending the summer where there was no electric current. We are slaves of bathrooms, Frigidaires, cars, radios and millions of other things. Einstein tried to reduce them to tire absolute minimum. Long hair minimizes the need for the barber. Socks can be done without. One leather jacket solves the coat problem for many years. Suspenders are superfluous, as are nightshirts and pajamas. It is a minimum problem which Einstein has solved, and shoes, trousers, shirt, jacket, are the very necessary things; it would be difficult to reduce them further.
I like to imagine Einstein's behavior in an unusual situation. For example: Princeton is bombed from the air; explosives fall over the city, people flee to shelter, pa ic spreads over the town and everyone loses his head, increasing the chaos and fear by his behavior. If this situation should find Eirstein walking through the street, he would be the only man to remain as quiet as before. He would think out what to do in this situation; he would do it without accelerating the normal speed of his motions and he would still keep in mind the problem on which he was thinking.

There is no fear of death in Einstein. He said to me once:
"Life is an exciting show. I enjoy it. It is wonderful. But if I knew that I should have to die in three hours it would impress me very little. I should think how best to use the last three hours, then quietly order my papers and lie peacefully down."


A Computer Drawing Calcomp Test Pattern

## Mr. Tompkins and Simultaneity

George Gamow

Mr Tompkins was very amused about his adventures in the relativistic city, but was sorry that the professor had not been with him to give any explanation of the strange things he had observed: the mystery of how the railway brakeman had been able to prevent the passengers from getting old worried him especially. Many a night he went to bed with the hope that he would see this interesting city again, but the dreams were rare and mostly unpleasant; last time it was the manager of the bank who was firing him for the uncertainty he introduced into the bank accounts... so now he decided that he had better take a holiday, and go for a week somewhere to the sea. Thus he found himself sitting in a compartment of a train and watching through the window the grey roofs of the city suburb gradually giving place to the green meadows of the countryside. He picked up a newspaper and tried to interest himself in the Vietnam conflict. But it all seemed to be so dull, and the railway carriage rocked him pleasantly....

When he lowered the paper and looked out of the wind'w again the landscape had changed considerably. The telegraph poles were so close to each other that they looked like a hedge, and the trees had extremely narrow crowns and were like Italian cypresses. Opposite to him sat his old friend the professor, looking through the window with great interest. He had probably got in while Mr Tompkins was busy with his newspaper.
'Weare in the land of relativity,' said Mr Tompkins, 'aren't we.'
'Oh!' exclaimed the professor, 'you know so much already! Where did you learn it from?'
'I have already been here once, but did not have the pleasure of your company then.'
'So you are probably going to be my guide this time,' the oid man said.
'I should say not,' retorted Mr Tompkins. 'I saw a lot of unusual things, but the local people to whom I spoke could not understand what my trouble was at all.'
'Naturaily enough.' said the professor. 'They are born in this world and consider all the phenomena happening around them as self-evident. But I imagine they would be quite surprised if they happened to get into the world in which you used to live. It would look so remarkable to them.'
'May I ask you a question?' said Mr Tompkins. 'Last time I was here, I met a brakeman from the railway who insisted that owing to the fact that the train stops and starts again the passengers grow old less quickly than the people in the city. Is this magic, or is it also consistent with modern science?'
'There is never any excuse for putting forward magic as an explanation,' said the professor. 'This follows directly from the laws of physics. It was shown by Einstein, on the basis of his analysis of new (or should I say as-old-as-the-world but newly discovered) notions of space and time, that all physical processes slow down when the system in which they are taking place is changing its velocity. In our world the effects are almost unobservably small, but here, owing to the small velocity of light, they are usually very obvious. If, for example, you tried to boil an egg here, and instead of letting the saucepan stand quietly on the stove moved it to and fro, constantly changing its velocity, it would take you not five but perhaps six minutes to boil it properly. Also in the human body all processes slow down, if the person is sitting (for example) in a rocking chair or in a train which changes its speed; we live more slowly under such conditions. As, however, all processes slow down to the same extent, physicists prefer to say that in a non-uniformly moving system time flows more slowly.'
'But do scientists actually observe such phenomena in our world at home?'
'They do, but it requires considerable skill. It is technically very difficult to get the necessary accelerations, but the conditions existing in a non-wiformly moving system are analogous, or should I say identical, to the result of the action of a very large force of gravity. You may have noticed that when you are in an elevator which is rapidly accelerated upwards it seems to you that you have grown heavier; on the contrary, if the elevator starts downward (you realize it best when the rope breaks) you feel as though you were losing weight. The explanation is that the gravitational field created by acceleration is added to or subtracted from the gravity of the earth. Well, the potential of gravity on the sun is much larger than on the surface of the earth and all processes there should be therefore slightly slowed down. Astronomers do observe this.'
'But they cannot go to the sun to observe it?'
'They do not need to go there. They cbserve the light coming to us from the sun. This light is emitted by the vibration of different atoms in the solar atmosphere. If all processes go slower there, the speed of atomic vibrations also decreases, and by comparing the light emitted by solar and terrestrial sources one can see the difference. Do you know, by the way'-the professor interrupted himself-' what the name of this little station is that we are now passing?'

The train was rolling along the platform of a little countryside station which was quite empty except for the station master and a young porter sitting on a luggage trolley and reading a newspaper. Suddenly the station master threw his hands into the air and fell down on his face. Mr Tompkins did not hear the sound of shooting, which was probably lost in the noise of the train, but the pool of blood forming round the body of the station master left no dcubt. The professor immediately pulled the emergency cord and the train stopped with a jerk. When they got out of the carriage the young porter was running towards the body, and a country policeman was approaching.
'Shot through the heart,' said the policeman after inspecting the body, and, puting a heavy hand on the porter's shoulder, he went on ' I am arresting you for the murder of the station master.'
'I didn't kill him,' exclaimed the unfortunate porter. 'I was reading a newspaper when I heard the shot. These gentlemen from the train have probably seen all and can testify that $I$ am innocent.'
'Yes,' said Mr Tompkins, 'I saw with my own eyes that this man was reading his paper when the station master was shot. I can swear it on the Bible.'
'But you were in the moving train,' said the policeman, taking an authoritative tone, 'and what you saw is therefore no evider.ce at all. As seen from the platform the man could have been shooting at the very same moment. Don't you know that simultaneousness depends on the system from which you observe it? Come along quietly,' he said, turning to the porter.
'Excuse me, constable,' interrupted the professor, 'but you are absolutely wrong, and I do not think that at headquarters they will like your ignorance. It is true, of course, that the notion of simultaneousness is highly relative in your country. It is also true that two events in different places could be simultaneous or not, depending on the motion of the observer. But, even in your country, no observer could see the consequence before the cause. You have never received a telegram before it was sent, have you? or got drunk before opening the bottle? As I understand you, you suppose that owing to the motion of the train the shooting would have been seen by us much later than its effect and, as we got out of the train immediately we saw the station master fall, we still had nor seen the shooting itself. I know that in the police force you are taught to believe only what is written in your instructions, but look into them and probably you will find something about it.'

The professor's tone made quite an impression on the policeman and, pulling out his pocket book of instructions, he started to read it slowly through. Soon a smile of embarrassment spread out across his big, red face.
'Here it is,' said he, 'section 37, subsection 12, paragraph e: "As a perfect alibi should be recognized any authoritative proof, from any moving system whatsoever, that at the moment of the crime or within a time interval $\pm c d$ ( $c$ being natural speed limit and $d$ the distance from the place of the crime) the suspect was seen in another place."'
'You are free, my good man,' he said to the porter, and then, turning to the professor: 'Thank you very much, Sir, for saving me from trouble with headquarters. I am new to the force and not yet accustomed to all these rules. But I must report the murder anyway,' and he went to the telephone box. A minute later he was shouting across the platform. 'All is in order now! They caught the real murderer when he was running away from the station. Thank you once more!'
'I may be very stupid,' said Mr Tompkins, when the train started again, 'but what is all this business about simultaneousness? Has it really no meaning in this country??
'It has,' was the answer, 'but only to a certain extent; otherwise I should not have been able to help the porter at all. You see, the existence of a natural speed limit for the motion of any body or the propagation of any signal, makes simultaneousness in our ordinary sense of the word lose its meaning. You probably will see it more easily this way. Suppose you have a friend living in a far-away town, with whom you correspond by letter, mail train being the fastest means of communication. Suppose now that something happens to you on Sunday and you learn that the same thing is going to happen to your friend. It is clear that you cannot let him know about it before Wednesday. On the other hand, if he knew in advance about the thing that was going to happen to you, the last date to let you kncw about it would have been the previous Thursday. Thus for six days, from Thursday to next Wednesday, your friend was not able either to influence your fate on Sunday or to learn about it. From the point of view of causality he was, so to speak, excommunicated from you for six days.'
'What about a telegram?' su vgested Mr Tompkins.
'W'ell, I accepted that the velocity of the mail train was the maximum possible velocity, which is about correct in this country. At home the velocity of light is the maximum velocity and you cannot send a signal faster than by radio.'
'But still,' said Mr Tompkins, 'even if the velocity of the mail train could not be surpassed, what has it to do with simultaneousness? My friend and myself would still have our Sunday dinners simultaneously, wouldn't we?'
' No , that statement would not have any sense then; one observer would agree to it, but there would be others, making their observations from different trains, who would insist that you eat your Sunday dinner at the same time as your friend has his Friday breakfast or Tuesday lunch. But in no way could anybody observe you and your friend sim ultaneously having meals more than three days apart.'
'But how s.an all this happen?' exclaimed Mr Tompkins unbelievingly.
'In a very simple way, as you might have noticed from my lectures. The upper limit of velocity must remain the same as observed from different moving systems. If we accept this we should conclude that....'

But their conversation was interrupted by the train arriving at the station at which Mr Tompkins had to get out.

## Mathematics and Relativity

Eric M. Rogers

## Mathematics as Language

The scientist, collecting information, formulating schemes, building knowledge, needs to express himself in clear language, but ordinary languages are much more vague and unrelable than most people think. "I love vegetables" is so vague that it is almost a disgrace to a civilized language-a few savage cries could make as full a statement "A thermometer told me the temperature of the bath. water." Thermometers don't "tell." All you do is try to decide on its reading by staring at it-and you are almost certainly a little wrong A thermometer does not show the temperature of the water, it shows it oun temperature Some of these quarrels relate to the physics of the matter, but they are certainly not he!ped by the wording We can make our statements safer by: being more careful, but our science still emerges with wording that needs a series of explanatory footnotes In contrast, the language of mathematics says what it means with amazing brevity and honesty When we urite $2 x^{2}-3 x+1=0$ we make a very definite, though very dull, statement about $x$ One advantage of using mathematics in science is that we can make it write what we want to say with accuracy, avoiding vagueness and unwanted extra meanings The remark " $3 v$ ' $\Delta t=32$ " makes a clear statement without dragging in a long, wordy description of acceleration $\eta=16 t^{2}$ tells us how a rock falls without adding anv comments on mass or gravity
Mathematics is of great use as a shorthand, both in stating relationslups and in carrying out compheated
arguments, as when we amalgamate several relationshups. We can say, for uniiormly accelerated motion, "the distance tratelled is the sum of the product of initial velocity and time, and half the product of the acceleration and the square of the time." but it is shorter to sav, " $s=v_{0} t \div{ }^{2}=a t^{2}$." If we tried to operate wti: sordy statements initead of algebra, we should strll be able to start with two acceleratedmotion relations and extract a third one, as when we obtained $v^{2}=v_{0}{ }^{2}+2 a s$ in Chapter 1, Appendix A, but, without the compact shorthand of algebra, it would be a brain-twister argument Cong still further, into discussions where we use the razorsharp algebra called calculus, argu:ng in words would be impossibly complex and cumbersome. In such cases mathematics is like a sausage-mach'ne that operates with the rules of logical argument nistead of wheels and pistons. It takes in the scientufic information we provide-facts and erlutionships írom experiment, and schemes from cur minds, dreamed up as guesses to be tried-u.d rehashes them into new form Like the real sausige-machine, it does not always deliver to the new sausage all the matertal fed in, but it never delivers anything that was not supplied to it originally It cannot manufacture science of the real world from its own machinatiors

## Mathematecs: the Good Servant

Yet in addition to routine services mathematics can indeed perform marvels for science. As a lesser marvel, it can present the new sausage in a form that suggests further uses. For cample, suppose
you had discosered that falling bodies have a constant acceleratron of 32 ft . sec, sec, and that an: downuard motion they are given to start whith is pust added to the motion ganed by acceleration Then the mathem:tical machne could take vour experimental dicesery and measurement of " g " and predict the relitionship $s=t_{8} t+\frac{142}{(32)} t^{2}$. Xou suppose you hac' rever thought of including upward-thrown things in sour study, had never seen a ball rise and fall in :4 parabola. The mathematical machune, no: having been warned of any such restriction, would calml; offer its prediction as if unrestricted Thus you night try putting in an upward start, giving $r$, a regative value in the formula. At once the formula telis a different-looking story In that case, it savs,


$$
3 x y_{0}+\frac{1}{2} 3 z
$$

Fic 11
the stome sould fly up slower and slo ver, reach a heglecst :-nnt. and then fall faster and faster. Thes is act $t$ rash guess on the algebra's part It is an unemotionai routine statement. The algebra-m.achine's defense would be, Fiou never told me $e$, had to lee downward I do not know whether the new peediction is right All I can sav is that IF an 'puard throu follous the rules $I$ uas toll to use for dount ard throws. THEN an upuard throun ball uall rise, stop. fall." It is we who make the rash guess that the basic rules may be general. It is we who welcome the machine's new hint, but we then go ont and tre it : To take another example from projectule mathematics the following problem. which sou met earlier. has two answers.

## Probleas

-A stone as thrown upward, with initial speed $64 \mathrm{ft} / \mathrm{sec}$. at a burd in a tree How long after its start will the stone hit the bird. which is is feet above the thrower" $17 / 77 / 1.71 / 17,7!/$ Answer.

Fir 3i.2
1 second or 3 seconds

This shows algebra as a ver! honest, if rather dumb, senant There are two answers and there should be, for the problem as presented to the machne The ste se nas hit the bird as it goes up ( 1 see from start '. or as it falls down again (after 3 secs). The machine, if blamed for the second muswer would complain. "But you never told me the stone had to hit the bird, still !ess that it must hit it on the "ay up I only calculated uhen the stone would be 48 feet above the thrower. There are two such tumes." l,ooking back, we see we neither wrote ant. thing in the mathematics to express contact between stone and bird nor said which "ay the stone was to be moving It is our fault for giving incomplete in. structions, and it is to the credit of the machine that it politely tells us all the answers which are possible within those instruction,
If the answer to some algebra problem on farm. mg emerges as 3 cows or 24 cows, we rightly reject the second answer. but we blame ourselies for not ielling the mathematical machine an important fact about rows In phisics problems where several answers emerge we are urualiy unwse to $: \therefore$, some of them awav Thes may all be pute ir e os: if some are verv queer, accepting them pros is, nally $\mathrm{n}_{\mathrm{a}}$ : lead to new knowledge If you look back . the proectile problem. No 7 in Chapter 1 , Appendix B, sur mav now see what its second answer meant Here is one like it.


Probleve.
A man throus a stone down a well which is 96 feet deep. It starts with dounuard velocity 16 ft 'sec. When will te reach the botion?
Fic $31-4$
Tius:s a smple example, ehosen to use phoses wos are familhar whth-unfortunately so stmple that sm: hou the a-suef before vou let the machine suggest it There are many cases where the machine can produce suggestions that are quide unexpected and do indeed send as nishong to experiment E. \%. mathematical trestment of the wave thenn of light suge. mathematucal terestment of the wave thenn of ase there will be a tiny brighe sport of light in the maddle of the shadow on a wall "There is a hole in econs comn"


Assign surtable + and - signs to the data, substitute them in a suitable relation for free fall, and solve the equation. You will obtain two answers. One a sensible tume with + sign (the "right" answer), the other a negative time. Is the negative answer necessanly meaningless and silly? A time such as " -3 seconds" simply means, " 3 seconds before the clock was started" The algebra-machune is not told that the stone was flung down by the man It 15 only told that when the clock started at zero the stone was moving DOWN with speed $16 \mathrm{ft} / \mathrm{sec}$, and thereafter fell freely For all the algebra knous. the stone may have just skimmed through the mans hand at time zero. It may lave been started much earker by an assistant at the bottom of the well who hurled it upward fast enough to have just the right velocity at time zero. So, whule our story runs, "George. standing at the top of the well, hurled the stone down...," an answer - 3 seconds suggests an alternative story: "Alfred, at the bottom of the well, hurled the stone up with great speed. The stone rose up through the well and into the air above, with dimmshing speed, reached a highest point, fell with mereasing speed, moving down past George 3 seconds after Alfred threw it. George missed it (at $t=0$ ), so it passed him at $16 \mathrm{ft} / \mathrm{sec}$ and fell on down the well agan." According to the algebra, the stone will reach the bottom of the well one second after it leaves George, and it might have started from the bottom 3 seconds before it passes Genrge.
Return to Problem 7 of Chapter 1, Appendix B and try to interpret ats two answers.

## Problem 7

A man standing on the top of a tower throw's a stone up into the arr with mitial velocity 32 feet $/ \mathrm{sec}$ upward. The man's hand is 48 feet above the ground How long will the stone take to reach, the ground ${ }^{\text {P }}$


In these problems mathematics shows itself to be the completely honest servant-rather like the horest boy in one of G. K Chesterton's "Father Brown" stones (There, a slow-witted village lad delivered a telegram to a miser The miser meant to tup the bey wath the smallest English com. a bright bronze farthing ( ${ }^{1}$ st) , but gave him a gokien pound (S3) bry mistake What was the boy to do when he discovered the obvous mistake ${ }^{2}$ Keep the pound, trading on the mistahe dishonestly ${ }^{2}$ Oi bring it back unth urctuous virtue and embarrass the miser into
saying "Keep it, my boy"? He did nether He simply brought the exact change, 19 shullungs and $11^{3 / i}$ pence The miser was deinghted, saving, "At last I have found an honest man", and he bequeathed to the boy ali the gold he possessed The boy, in wooden-headed honesty, interpreted the miser's will literallv, even to the extent of taking gold fillings from his teeth )

## Mathematics the Clever Sertant

As a greater marvel, mathematics can p.esent the new sausage in a form that suggests entureh new viewpoints With vision of genus the scientist may see, in something new, a faint resemblance to something seen before-enough to suggest the next step in maginative thinking and tral If we tried to do without mathematics we should lose more than a clear language. a shorthand script for argument and a powerful tool for reshaping information. We should also lose an aid to scientufc vision on a higher plane.

With mathematics, we can codify present sctence so clearly that it is easier to discover the essential simplicity many of us seek in science That is no crude simplicity such as finding all planetary orbits carcles, but a sophisticated simphicity to be read only in the language of mathematics itself. For example, imagine we make a hump in a taut rope by slapping it (Fig 31-6). Using Newton's Law II, we


Fig 31-6 Waie Travels tlove a Rope
can zodify the behavior of the hump in compact mathematical form. There emerges, quite unnvited. the clear mathematical trademark of wave motion The mathematical form predicts that the hump will travel along as a wave, and tells us how to compute the wave's speed from the tension and mass of the

- The wave-equation reduces to the essental form $\nabla^{2} \cdot=\left(1 \cdot c^{*}\right) d T^{\prime} \cdot d b^{\prime}$
Fer any uave of constant pattem that travels with speed $c$ Fer cny uave of constant patictn that travels with speed e
(If you are lamilat with calculus, ash a phistist to shou (If you are lamuar with calculus, ask a pirsicist to shou
you this remarkable piece of general mathematical physics) you this remarkable prece of general inathematical physics)
This equation cennects a spreading-in-space with a rate-ofThis equation ceqnects a spreading-in-space with a rate-of-
change in tame $7{ }^{\prime}$ would be gero for an inverse-scitare Eeld at : st in space hut here it has a salue that looks like some acceleration in the electromagnetic case, we may trace the $d^{T} l / d r^{r}$ bach to an accelerating election emiting the wave
rope. Another example. A century ago, Maxwell reduced the experimental laws of electromagnetism to especially simple forms by boiling them down mathematically. He removed the details of shape and size of apparatus, etc., much as we remove the shope and size of the sample when we calculate the d...sity of a metal from some weighing and measuring Having thus removed the "boundary conditions," he had electrical laws that are common to all apparatus and all circumstances, just as density is common to all samples of the same metai. His rules were boiled down by the calculus-process of differentiation to a final form called differental equations You can inspect theur form 'vithout understanding their terminology Suppose that at tume $t$ there are fields due to electric charges and magnets, whether moving or not, an electric field of strength $E$, a vector with comporients $E_{i}, E_{y}, E_{z}$, and a magnetic fell $H$ with components $H_{z}, H_{y}, H_{s}$. Then, in open space (air or vacuum), the experimental laws known a century ago reduce to the relations shown in Fig. $31-7$

| $\frac{d E_{x}}{d x}+\frac{d E_{y}}{d y}+\frac{d \varepsilon_{z}}{d x}=0$ | $\frac{d H_{x}}{d x}+\frac{d H_{y}}{d y}+\frac{d H_{z}}{d z}=0$ |
| :---: | :---: |
| III | IF |
| $\left(\frac{d E_{2}}{d y}-\frac{d E_{y}}{d z}\right)=K_{H} \frac{d H_{x}}{d t}$ | $-\left(\frac{d H_{z}}{d y}-\frac{d H_{y}}{d z}\right)=0$ |
| $\left(\frac{d E_{x}}{d i}-\frac{d E_{z}}{d x}\right)=h_{H} \frac{d H_{y}}{d t}$ | $-\left(\frac{\dot{i} H_{x}}{d z}-\frac{d H_{z}}{d x}\right)=0$ |
| $\left(\frac{d E_{y}}{d x} \quad \frac{d E_{x}}{d_{b}}\right)=h_{H} \frac{d H_{z}}{d_{i}}$ | $-\left(\frac{d H_{3}}{d x}-\frac{d H_{2}}{d y}\right)=0$ |

 The constant $K_{s}$ relates to magnetic fieids It appears un: the expression for the force exerted by a masartic field on an clectuc current (See the discussion in this chipter and in Ch 3 ) There is a corresponduig clectre censt, nt Kr, which appears in Conlomb's I.au (See Ch 33)

Look at IV and compare it with III. The equateons of IV look incomplete, spoiling the general symmotry ${ }^{2}$ Maxwell saw the defect and filled it by inventing an extra electric current, a spooky one in spacc. quite unthought-of till then, but later ob-
${ }^{2}$ In completing IV., on will need to insert a constant $K_{2}$ corresponding to $K$ in III The minus sign is ohvously un. necessury in the present form of $I \because$. and when $1 V$ is completer' : . , il sonit tien stm,n-ti, :onewhat, hut the expenmental facts prodic it $r$ inservation of anergy requires $t$. and without it the.e would be no radro wases
served experimentally How would you change IV to match III if told that part of the .ilgebra had been left out because it was then unknown? Try thus.
The addition was nether a lucky guess nor a mysterious inspiration. To Maxwell, fully aware of the state of developing knowledge, it seemed compulsory, a necessary extension of synmetry-that is the difference between the scientufic advance of the disciphned, educated expert and the free invention of the enthusiastic amateur

Having made his addition, fantastic at the time, Maxwell could pour the whole bunch of equations into the mathematical sausage-machine and grind out a surprising equation which had a familar look, the same trademark of wave-motion that appears for a hump on a rope. That new equation suggested strongly that chaninges of electric and magnetic felds would travel out as waves with speed $v=1 / \sqrt{K_{\mathrm{B}} K_{\mathrm{E}}}$ Here $K_{\mathrm{I}}$ is a constant involved in the magnetic effects of moving charges, and $K_{E}$ is the correspond. ing electrostatic constant inserted by Maxwell in his improvement.s ( $K_{\mathrm{E}}$ is involved in the inverse-square force between electric charges.)

An informal fanciful derivation is sketched near the end of Chapter 37.
To Maywell's c'elight and the wonder of his contemporaries, the calculated $v$ agreed with the speed of light. which was already known to consist of waves of some sort This suggested that light mught be one form of Maxwell's predicted electromagnetic waves.
It was many years before Maxwell's prediction was verified directly by generating electromagnetic waves whh electric currents As a brillant intuitive guess, a piece of synthetic theory, Maxwell's work was one of the great developments of phvsics-its progeny, new guesses along equally fearless lines, are making the physics of today.
One of the great contribut:ons of mathematics to physics is Relativity, whach is both mathematics and physics: you need good knowledge of both mathematics and physics to understand it We shall give an account of Einstein's "Special Relativity" and then return to comments on mathentatics as a language.
${ }^{2}$ In this course we use diferent symbols Sec Ch 33 and Ch 37 We write the force between electac charges $F=B\left(\varphi_{\mathbf{t}} \varphi_{\mathbf{z}}\right) d^{2}$ Comparson $u_{i}$ th Maxuell's form shous our $E$ is the same as $1, K_{8}$ Again, ue write the force between two short preces of current-carrving wire, due to magneticfeld effects, $c^{-}=B^{\prime}\left(C_{1} L\right)\left(C_{2} L_{n}\right) / d^{\prime}$, and our magnetuc- $B^{*}$ is the same as $K_{n}$ Then Maxuell's presiction. $v=1, K_{B} K_{n}$, be. comes, in nur terminoleigv, $v=1 / \sqrt{(/ B)\left(B^{2}\right)}=\sqrt{B / B}$. So. If you measure $B$ and $B^{\circ}=1 / \backslash$ vou predart the speed of eiectromametic wases The arthmetec is cass Trut and compure the in sult with tier measured sperd of hight. $30 \times 10^{\circ}$ moters'ses ( $B=900 \times 10^{\circ}$ and $B^{\prime}=10^{\circ}$. in our unts)

## REL.ATIVITY

The theory of Relativity, which has modified our mechanics and clarified scentafic thanking, arose from a simple question "How fast are ue moveng through space?" Attempts to answer that by experiment led to a conflict that forceci scientists to thunk out their system of knowledge as esh. Out of that reappraisal came Relativity, a briliant application of mathematics and phulosophy to our treatment of space, time, and motion. Since Relativity is a prece of mathematics, popular accounts that try to explan it without mathematics are almost certain to fail. To understand Relativity you should ether follow its algebra through in standard texts, or. as here, examine the origirs and final results, taking the mathematical machine-work on trust
What can we find out about space ${ }^{2}$ Where is its fixed framework and how fast are we moving through it ${ }^{\text {P }}$ Nowadays we find the Copernican view comfortable, and picture the spinning Earth moving around the Sun with an orbital speed of about 70.000 miles/hour The whole Solar system is moving towards the constellation Hercules at some 100,000 miles/hour. wh..te our whole galaxy. . .

We must be careering along a huge epicyolord through space without knowing it Without knowing it, because, as Gahleo pointed out, the mechanics of motion-projectules, collisions. ., etc -is the same in a steaduly moving laboratory as in a stationary one 'Gahleo quoted thought-experiments of men walking across the cabin of a saling shıp or dropping stones from the top of its mast. We illustrated this "Galhlean relativitv" in Chapter 2 by thought-experimerits in moving trams Suppose one tran is passing another at constant velocity without bumps, and ma fog that conceals the countryside Can the pasiongers really say which is moving ${ }^{3}$ Can mechamical taperments in cither train teli them ${ }^{2}$ They can onlv obsene their relatue motwn ln fact. we developed tt - rales of vectors and laws of motion in earthly labs that are moving, yet those statements show no effect of that motion

We give the name tnertal frawe to anv frame of :ae-ence or laboratory in which Newton's Lave

- Though the Earth's velocity changes around is ortit, we thinh of if as stexdy enough dunne anv short exper,ment In fact. the steadiness is perfect. berause any changes on the Earth's velocitv eractly compensate the effect of the Sunis gravitation field that "canses" those changes Wr sce no rffect on the Earth as a whole, at its center, but we do see diferentual effects on outling parts-solar tudes The Earth's rotatwon does proluce effects that can be seen and measured -Foncault's pendulum changes ats line of suing, g shous differ-nces beturen equator and poles, \&c -but uc can make allowances for these where they matter
seem to describe nature truly objeets left alone wathout force pursue straight lues with constant speed, or stay at rest, forces produce proportional accelerations We find that any frame moving at constant velocity relative to an inertial frame is also an inertial frame-Newton's Law's hold there too. In all the following discussion that concern, Galilean relativity and Einstem's special Rehativity, we assume that every laborutory we discuss is an inertual frame--as a laboratory at rest on Earth is. to a close approcimation * In our later discussion of General Re'tivity, we consider other laboratory frames, such as those which accelerate.
We are not supphed by nature with an obvious inertual frame The spinning Earth is not a perfect inertal frame (because its spin imposes central accelerations), but if we could ever find one perfect one then our relativity view of nature assures us we could find any number of other inertal frames. Every frame moving with constant velocity relative to our first inertial frame proves to be an equally good inertial frame-Newton's laws of moton. which apply by defintion in the original frame, apply in all the others When we do experiments on force and motion and find that Newton's Laws seem to hold, we are, from the point of new of Relatinty, simply showing that our earthly lab does provide a practically perfect inertial frame Any experments that demonstrate the Earth's rotation could be taken instead as showing the imperfection of our choice of frame. However, by saying "the Earth is rotating" and blaming that, we are able to imagine a perfect frame, in which Newton's Laws would hold exactly
We incorporate Galile on Relativity in our formulas When we write, $s=v_{n} t+h a t^{2}$ for a rocket accelcrating horizontally we are saving. 'Start the rocket with $t_{\text {, }}$, and its effect will persist as a plam addition, $v t$, to the distance travelled"


This can be rew orded: "An experimenter $\varepsilon$, starts a rochet from rest and observes the motion $s=$ hut ${ }^{2}$. Then another expenmenter, $\varepsilon^{\circ}$, running away with speed $\varepsilon_{n}$ will measure distances-travelled given by $s^{\prime}=v, t+{ }^{12 a t 2}$. He will include $t, t$ due to has own mot.nn"
We aro saung that the effects oi steady motion
and accelerated motion do not disturb each other, they just add
$\varepsilon$ and $\varepsilon^{\prime}$ have the following statements for the distance the rocket travels in tume $t$

$$
\begin{array}{cc}
\text { EXPERIMENTER } \varepsilon & \text { EXPERIMENTER } \varepsilon^{\prime} \\
s=s^{\prime} a t^{2} & s^{\prime}=v_{v} t+{ }^{1} \varepsilon a t^{2}
\end{array}
$$

Both statements say that the rocket travels with constant acceleration. ${ }^{\text {s }}$

Both statements say the rocket is at distance zero (the origm) at $t=0$
The first statement says $\varepsilon$ sees the rocket start from rest When the the clock starts at $t=0$ the rocket has no ve'verty relative to him At that instant, the rocket is moving with his motion, if any-so he sees it at rest-and he releases it to accelerate.
The difference between the two statements says the relative velocity between $\varepsilon$ and $\varepsilon^{\prime}$ is $v_{0}$. There is nc information about absolete motion $\varepsilon$ may be at rect, in which case $\varepsilon^{\prime}$ is running backward wath speed $v_{0} O_{r} \varepsilon^{\prime}$ may be at rest, and $\varepsilon$ runming for-
 Or both $\varepsilon$ and $\varepsilon^{\prime}$ may be carried along in a moving train witl ternfic speed $V$, stll wath $\varepsilon$ moving ahead with speed $v_{0}$ relative to $\varepsilon^{\prime}$. In every case, $v_{n}$ is the relative velocity between the observers, and nothing in the analysis of their measurements can tell us (or them) who is "reallv" moung

"The first statement is sumpler becanse it belongs to the obsencer who releases the rechet from rest rel ative to hom, at the instant the clock starts, $t=0$


Adding $v_{0} t$ only shifts the graph of $s$ vs $t$ It does not affect estumates of acceleratıon, force, etc Then, to the question, "How fast are we moving through space?" simple mechanics replies, "No experaments with weights, springs, forces,. ., can reveal our velocity Accelerations could make themselves known, but uniform velocity would be unfelt " We could only measure our relative velocity-relative to some other object or material framework


Observers in two laboratones, one moving wath constant velocity $o$ relatue to the other, will find the same mechanual laus

Yet we are sull talking as of there is an absolute motion, past absolute landmarks in space, however hard te find Befnre exploring that hope into greater disappr intments, we shall codify rules of relative motio in smple algebrac form

## Galilean Transformation for Coordinates

We can put the comparison between two such observers in a simple, general way. Suppose an observer $\varepsilon$ records an event in his laboratory Another


Observer ready to observe an event at tume $t$ and place $x, y . z$
observer, $\varepsilon^{\prime}$, flies through the laboratory whth constant velocity and records the same event as he goes As sens.ule scientists, $\varepsilon$ and $\varepsilon^{\prime}$ manufacture adentical clocks and meter-sticks to measure with Each carnes a set of $x \cdot y \cdot z$-axes with hme For convenience, they start therr clocks ( $t=0$ and $t=0$ ) at the instant they are together At that instant their coordinate origns and axes concide. Suppose $\varepsilon$ records the event as happening at tume $t$ and place ( $x, y, z$ ) referred to his axes-at-rest-wth $\cdot$ hum. ${ }^{8}$ The same event is recorded bo oberver $\varepsilon^{\prime}$ using hes instruments as occurring at $t^{\prime}$ and $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ referred to the axes-he-carnes-with-hm How will the two records cempare ${ }^{2}$ Common sense tells us that time

is the same for both, so $t=t$ Suppose the relatue velocity between the two obsericrs is $v$ meters sec

[^2].long OX. Measurements of $y$ and $z$ are the same for both $y^{\prime}=y$ and $z^{\prime}=z$ But since $\varepsilon^{\prime}$ and his coordmate frameworh travel ahead of $\varepsilon$ by ct meters in $t$ seconds, all his $i$-measurements will be it shorter So cery $x^{\prime}$ must $=x-$ te. Therefore


Fic 31-12c
For measurements along durection of relative motion $v$, For measurements atong duection of relative motion $v$,
the second obserser measires $x$, the first measures $x$ Then it seems obious that $x^{\prime}=x-$ it

These relations, which connect the records made by $\varepsilon^{\prime}$ and $\varepsilon$, are called the Gallean Transformation.

The reverse transformation, connecting the records of $\varepsilon$ and $\varepsilon^{\prime}$, is.

$$
x=x^{\prime}+c t \quad y=y^{\prime} \quad z=z^{\prime} \quad t=t^{\prime}
$$

These two transformations treat the two observers impartally, merely indicating their relative velocity, $+v$ for $\varepsilon^{\prime}-\varepsilon$ and $-v$ for $\varepsilon-\varepsilon^{\prime}$. They contan our common-sense knowledge of space and time. written in algebra

## Velocty of Moung Object

If $\varepsilon$ sees an object moving forward along the $x$ direction, he measures its velocity, $u$. by $\Delta x / \Delta t$. Then $\varepsilon^{\prime}$ sees that object moving with selocitv $u^{\prime}$ given by his $3 x^{\prime} ; \Delta t^{\prime}$ Simple algebra, using the Galiean Transformation, shows that $u^{\prime}=u-v$ (To obtain this relation for motion with constant velocity, just divide $x=x-t$ by $t$ ) For example suppose $\varepsilon$ stands beside a railroad and sees an express tran moving with $n=-0$ miles/hour An. other observer, $\varepsilon^{\prime}$, rides a freight tram moving 30 miles hour in the same direction Then $\varepsilon^{\prime}$ sees the express noving with

$$
u^{\prime}=u-v=70-30=40 \mathrm{miles} / \mathrm{hour}
$$

(If $\varepsilon^{\prime}$ is moving the opposite wav, as in a hear.on collision, $v=-30$ mules/hour, and $\varepsilon^{\prime}$ sees the $e$. press approdehurg with speed

$$
\left.u^{\prime}=70-(-30)=100 \text { mile.s hour }\right)
$$



Stationary enpe..nenter $\varepsilon$ observes the velocities shown and calculates the relative velocity that moving evpermenter $\varepsilon$ ' should observe
This is the "common sense" way of adding and subtracting velocites. It seems necessarly true, and we have tahen it for granted $m$ earlier chapters Yet we shall find we must modify it for very high speeds.

## PAbsolute atotion $^{2}$

If we discover our laboratory is in a moung tran, we can add the trann's velocity and refer our experiments to the sold ground Finding the Earth moving, we can shift our "fixed" axes of space to the Sun, then to a star, then to the center of gravity of all the stars If these changes do not affect our knowledge of mechanics, do they really matter? Is it honest to worry about finding an absolutely fixed framework" Curiosity makes us reply, "Yes' If we are moving through space it would be interesting to know how fast." Though mechanical experiments cannot tell us, could we not find out by electrical experiments? Electromagnetism is summed up in Maxwell's equations, for a stationary observer Ask
what a moving observer should find, by changing $x$ to $x^{\prime}$, etc, with the Gallean 'Transformation. then Maxwell's equations take on a different, nore complacated, form. An eqpermenter who trusted that transformation could decide which is really moving, himself or his apparatus. absolute motion would be revealed by the changed form of electrical laws. An easy way to look for such changes would be to use the travelling electric and magnetic fields of light waves-the electromagnetic waves predicted by Maxwell's equations. We might find our velocity through space by timing flashes of lught. Seventy-five years agc, such expermments were being tried When the experiments yielded an unexpected result-falure to show any effect of motion-there were many attempts to produce an explanation. Fitzgerald in England suggested that whenever any piece of matter is set in motion through space it must contract, along the direction of motion, bv a fraction that depended only on its speed With the fraction properly chosen, the contraction of the apparatus used for timing light signals would prevent their revealing motion through space. Thus strange contraction, which would make even measuring rods such as meter-stacks shrnk like evervthing else when in motion, was too surprising to be welcome, and it same with no suggestion of mechanism to produce it. Then the Dutch physicist Lorentz (also Larmor in England) worked out a successful electrical 'explanation."

## The Lorentz Transformation

Lorentz had been constructung an electrical theory of matter, with atoms contaning small electric charges that could move and emtt light waves The expermental discovery of electron streams, soon after, had suriported his speculation;, so it was natural for Lorentz to try to explan the unexpected result with his electrical theory He found that if Maxwell's equations are not to be changed in form by the motion of electrons and atoms of moving apparatus. then lengths along the motion must shrink, in changing from $r$ in $x^{\prime}$, by the modifyng factor'

He showed that this shrinkage (the same as Fitzgerald's) of the apparatus would just conceal any motion through absolute space and thus explan the experimental result But he also gave a reason for the change he showed how electrical forces-in the
new form he took for Matwell's equations-would compel the shrinkage to tahe place
It was uncomfortable to have to picture matter in motion as invisiblv shrunh-minsibly, because we should shrink too-but that was no worse than the previous discomfort that phisicists wath a sense of matrematical form got from the uncouth elfect of the Galilean Transformation on Maxwell's equatoons. Lorentz's modifying factor has to be applied to $t^{\prime}$ as well as $x^{\prime}$, and a strange extra term must be added to $t^{\prime}$ And then Naruell's equations mantan their same simple symmetrical form for all observers moving with ani constant velocity You will see this "Lorentz Tiansformation" put to use in Relatinty, but first see how the great experiments were made with l ght signals

## Measurng Our Speed through "Space"?

A centurv ago, it was clear that light consists of waves, which travel with very high speed through glass, water, air, even "empty space" between the stars and us Scientists magined space filled with "ether" to carry lught waves, much as arr carries sound waves Nowadays we think of light (and all other radio waves) as a travelling pattern of electric and magnetic fields and we need no "ether"; but before we reached that sumple view a tremendous contradiction was discovered
Experunents with light to find how fast we are moving through the "ether" gave a surprising result: "no comment" These attempts contrast with successful measurements with sound waves and air.
Sound travels as a wave in arr A trumpet-toot is handed on bv aur molecules at a definte speed through the air, the same speed whether the trumpet is moving or not. But a moving observer finds his motion added to the motion of sourd waves When he is running towards the trumpet, the toot passes by him faster He can find how fast he is moving through air by timing sound signals passing hum


Fig 31-15
Experimenter runnung towards source of sound finds the speed of sound 1120 ft ve. in excess of normal
bu hawn giepd

- Thes ether or a the r wa named diter the nmersal substance that (reit pholowpher had putured fillase all caue becond the atmonphere

A moung observer will notice another effect if he is out to one side, listening with a directionfinder He wall meet the sound slanting from a new


Fic $31-16$
Observer rumang across the line-of-travel of sound notices a change of apparent direction of source
direction if he runs Again he can estumate his runming speed if he knows the speed of sound
In ether case, his measurements would tell hun lus speed relatwe to the air. A steady wind blowing would produce the same effects and save him the trouble of running. Similar experiments with light should reveal our speed relative to the "ether," which is our only remaning symbol of absolute space. Such expernnents were tried, with farreaching results.

## Aberrution of Starlgght

Soon after Newton's death, the astronomer Bradley discovered a tuny yearly to-and-fro motion of all stars that is ciearly due to the Earth's motion around its orbit. Think of starhght as ram showering down (at great speed) from a star overhead. If you stiad in vertical rain holding an umbrella upright, the rain will hit the umbrella top at right angles. Drops falling through a central gash will hit your head. Now run quite fast To you the rain will seem slanting. To catch it squarely you must tult the umbrella at the angle shown by the vectors in the sketch Then drops falling through the gash will still hit your head If you run around in a circular orbit, or to-and-fro along a line, you must wag the umbrella this way and that to fit your motion This is what Bradlev found when observing stars precisely with a telescope ${ }^{\circ}$ Stars near the ecliptic seemed to slide to-and-fro, their directions swinging through a small angle Stars up near the pole of the echiptic

[^3]
move in small carcles in the course of a year. The telescope following the star is like the tilting umbrella. In sux months, the Earth's velocity around the Sun changes from one direction to the reverse, so the telescope tult must be reversed in that time. From the tiny measured change in 6 months, Bradley estumated the speed of light. It agreed with the only other estimate then available-based on the varying delays of seeing eclipses of Jupter's moons, at varving distances across the Earth's orbit -


Fig. 3I-18 "Aberration" of Ralv Falling in Wive If you stand still but a steady wind carnes the air past you, you should still thlt the umbrella

To catch rann drops fair and square, you must talt your umbrella if you are running or if there is a steady wind, but not of you are running and there is also a wind carrying the air and raindrons along with you-if you just stand in a shower inst de a closed ralroad coach speeding along, you do not tilt the umbrella Therefore, Bradley's successful measurement of aberration showed that as the Earth runs around its orbt it is moving through the "ether" in changing directions, moving through space if you hike, nearly 20 miles $/ \mathrm{sec}$.
An overall motion of the solar system towards some group of stars would remain concealed, since that would give a permanent slant to star directions,
${ }^{8}$ It was another century before terrestrial experiments
succeeded
$(\sim 1600)$
Cahlen recorded an attempt with experimenters
signallirg by lantem flashes signallirg by lantern flashes between two mountain tops $\varepsilon_{1}$ sent a flash to $\varepsilon_{2}$ who immediately returned a flash to $\varepsilon_{1}$ At first $\varepsilon$, was clumsy and they obtained a medium speed for light. As they improved with practice, the estimated speed grew greater and greater, touards "infinity"-
(~1700). Newton hnew only Roemer's estimate from Jupi-
(1849). Fizeau succeeded, by using a distant mirror to return the light and a ming a distant mirror to a chopper to make the flashes and catch them one tooth later on their return His result conone tooth later on their return His result con-
firmed the astronomical estimate His and all frmed the astronomical estimate His and all
later terrestral methods use some form of chopper-as in some methods for the speeds of
bullets, and electrons
The result speed of light is $300,000,000$ meters $/ \mathrm{sec}$ or $186,000 \mathrm{males} / \mathrm{sec}$

whereas Bradley measured changes of slant from one season to another.

## The Michelson-Morley Experiment

Then, seventy-five years ago, new experiments were devised to look for our absolute motion in space. One of the most famous and decisive was devised and carried out by A. A Michelson and E. W. Morley in Cleveland; this was one of the first great scientific achevements in modern physics in the New w'erld. In thear experiment, two flashes of light travelling in different directions were made to pace each other. There was no longer a moving observer and fixed source, as with Bradley and a star. Both source and observer were carried in a laboratory, but the experimenters looked for motion of the intervening ether that carried the light waves.


Fic 31-20. The Michelsov-Morley Experment
A semi-transparent mirror splat the light into two teams, one travelling, say, North-South and the other East-West. The two beams were returned along therr paths by mirrors and rejoined to form an interference pattern. The slightest change in triptime for one beam compared with the other would shift the pattern. Now suppose at some season the whole apparatus is moving upward in space: au outside observer would see the light beams tilted up or down by the "ether-wind" the same tilt for both routes. At another season, suppose the whole Earth is moving due North horizontally in space, then the N-S light beam wou'ㄴ take longer for its round trip than the E-W one. Yot will find the experiments described in standard texts, with the algebra to show that if the whole laboratory is sweeping through the ether, light must take longer on the trip along the stream and back than on the trip across and back.
You can see that this is so in the following example. Instead of light, consider a bird flying across a cage and back, when the cage is moving relative


Fig 31.21 Giavit Bhodace in Wind


J14, 31-22
Bird flies either aganst the wind and back. or across the wind and bach aeross the wind
to the arr. Either (a) drag the cage steadily along through still ar, or (b) keep the cage stall and have an equal wind blow through it the opposite way. We shall give the wind version, but you can re-tell the story for a noving cage, with the same results Suppose the Eird has ar-speed $5 \mathrm{ft} / \mathrm{sec}$, the cage is 40 ft square, and the wind blows through at 3 ft 'sec. To fly across-sireunt from sade to side and back takes



Fic 31.23
Cage tnoung $3 \mathrm{ft} /$ sec through still arr has same effect
on brd's fight as on brards fight as wind blowing 3 ft/sec through stationary cage.
the bird $10 \mathrm{sec}+10 \mathrm{sec}$, or 20 sec for the round trip To fly from end to end, upstream and back, tahes

$$
\frac{40 f t}{(5-3) f t \sec }+\frac{40 f t}{(5+3) f t \sec }
$$

or 20 sec +5 see, a much longer tume " Put a bird in a cage lhe this and compare his round trip times E-W and N.S, and you whll be able to tell hou fast the cage is moving through the arr, or use tum bards and compare thear returns Twist the cage to dif. ferent orientations, and returns of the twons will tell you which wav the cage is travelling through air and how fast. A sumilar experiment with sound waves in an open laboratorv moving through ar would tell us the laboratorys velocity. Iet a trumpeter stand in one corner and give a toot The arrivals of returning echoes will reveal general motion, of lub or wind (Of course, if the moving habonatory
"Thas requares some geometacal thinhang The bad must fly a $50-\mathrm{ft}$ hupotenuse to crovs the 40 .ft cage while the $8+8$ sernes han 30 ft dounstreme ine simple answer (1)
$(1.1)$

(6) Birens asi if



Itc 31.24 Dlizalls of Pitghts Bird hen 5 ft sec Steady wind $3 \mathrm{ft} / \mathrm{sec}$
:0 If you are still not cominced and fet sure the tnps up and downstrean should avelage out. try a thought-expent. ment with the wind blourig faster. Say $6 \mathrm{ft} / \mathrm{sec}$ Then the bud could never mahe the trip upstram-that time would
be onfintel
is closed and carnes its arr with it, the echoes will show no motion.)

The correspondang test with hight-signals is diffcult, but the interference pattern affords a very del:cate test of trip-timing When thas tried by Michelson and Vorley, and repeated by Miller, it gave a surprising answer so momos through the "ether." It was repeated in different orientations, at different seasons always the same answer, vo monion if you are a good scientist you will at once ask, "How big were the enor-boxes? How sensitive was the experiment?" The answer. "It i.suld have shown reliably $y^{2}$ of the Earth's orbital speed around the Sum. and in later'1 work, ${ }^{1} 1_{0}$ Yet aberration shows us moving through tine "ether" with ${ }^{1 \%} \%$ of that speed Still more expenments added their testimony, some optical, some electrical Agan and again, the same "null result." Here then was a confusing contradiction


## CONTRADICTION

Growing electrical theory added confusion, because Maxwell's equations seemed to refer to currents and fields in an absolute, fixed, space ( $=$ ether). Unluke Newton's Laws of Motion, they are changed by the Gallean Transformation to a different form in a moving laboratory. However, the modified transformation devised by Lorentz kept the form of Maxwell's equations the same for moving observers. This scerned to fit the facts-in "magnets and cols expenments" (Experiment C in Ch. 41), we get the same effects whether the magnet moves or the conl does. With the Lorentz Trars-

[^4]formation, electrical experments would shon relatwe velocity (as they do), but would never reveal umform absolute motion. But then the Lorentz Transformation made mechanics suffer, it twisted $F=M a$ and $s=v_{0}+b_{b a t}{ }^{2}$ ato unfamiliar forms that contradicted Gahleo's common-sense relativit: and Newton's simple law of motion.
Some modifications of the Michelson-Morley experiment rule out the Fitzgerald contraction as a sufficient "explanation." For example, Kennedy and Thomdike repeated it with unequal lengths for tho two perpendicular trips. Ther null result requires the Lorentz change of time-scale as well as the slarinkage of length.
Pour these pieces of information into a good logic machine The machine puts out a clear, strong con. clusion. "Inconsistent." Here is a very disturbing result Before studying Einstein's solution of the problem it posed, consuder a useful fable

## A Fable

[This is an annoying, untrue, fable to warn you of the difficulty of accepting Relativitv Counting items is an absolute process that no change of newpoint can alter, so this fable is very distressing to gooc' mainematicai physiests with a strong sense of nature-take it with a gram of tranquilzer You will find, however, that what it alleges so unpossible for adding up balls does occur in relativistic adding of velocities]

I ask you to watch a magic trick. I take a black cloth bag and convince you it is empty. I then put into it 2 white balls. You count them as they go in-one, two- and then two more-three, four. Now I take out 5 white balls, and the bag is en..pty.


Pour this record into the logic machne arid it will say, "Incousstent" What is your solution here? First, "It's an illusion" It is not. You are allowed to repeat the game yourself. (Miller repeated the Michelson-Morley experiment with greit precision) Next, "Let me re-examme the bag for concealed pockets." There are none. Now let us re-state the record. The bag is sumple, the balls are solid, the


Fte 61-25
tally is true $2+2$ go m and 5 come out what can you say now? If you cannot refute tried and true observations, you must ether give up scienceand go cran-or attack the rules of logig, molud. :ag the baste rules of arthunetic Short of neurotac lunacs, yot would have to say, "In some cases, $2+2$ do nut make 4 "Rather than take neurotic refage in ." catch-phase such as "It all adds up to anythng," bou mugh set yourself to catalogumg wents in wheh 2 and 2 make 4 meg. wding beans on at tute. coms in a purse, ant cataloyung events for whin $2+2$ mate something else ?

22 The. are cases where $2+2$ do not mahe a V'ectors $2+2$ mav nahe amytung between 0 and 4 Two quarts of deohol 4 iwo quarts of uater max limahe less than 4 quarts of dicohel + wo quarts of $u$ ater max 1 inalie less than 4 quarts
In the cercut shetched, all the resistons, $R$, are debte al but
 the heatug offects do mot add up Ino curreats ed.h
ering 2 f" les sec add to one delisering 8 poules sec

jumat s.e

$$
\text { Ir. } 31.27
$$

In studymg Viture, setentises base been seeking and selecting quantities that do add simply, surb as masses of liquils rabier than volumes, couper plating by eurrents rather than heatag The essence of the "exceptions" is that they are cases where the tenis to be added interact, they do not ;ust aet independent so that ther effects an ar superposed

In tius fable, you have tiree explanations to choose from
(a) "It \& witcheraft" That way madness hes
(b) There is a sperial mosible mechamsm" hardly any better-at turns sctence into a horde of demons
(c) "The rules of anthmetic must be modrfed."

However unpleasant (c) lonks, you had better try it-desperate measures for desperate cases Think carefully what you would do, in this phight.
You are not faced with that arithmetical parador in real hife, but now turn again to motion through space Ruling out mistaken expermenting, there were smilar chotes blame witeheraft, invent special mechanisms, or modify the physical rules of motion. At finst, sctentists nvented mechanisins, such as elecsons that squart. mo ellipsords when moving. but even these id to more trouble's Poincare and others prepored to change the rules for measurng thae and space Then Emiten made two bnlliant suggestions: an honest vecupont, and a single hypothess, in has Theorv of Mr ativity.
The Relativity revepont is thas. sementific thanking should be lenlt of things that can te observed an real experments, detanls and pictures that cannot be observed must not be seated as real questions about sucn detarls are not only unanswerable, they ve improper and a, scientific. On this view, fixed space (and the "ether" thought to fill it) must be
thrown out of our scientific thinking if we become convinced that all expenments to detect it or to measure motion through it are doomed to fanlure. This viewpoint merely says, "let's be realistic." on a ruthless scale.
All attempts like the Michelson-Morley-Miller experıment falled to show any change of light's speed. Aberration measurements did not show hght moving with a new speed, but only gave a new direction to its apparent velocty. ${ }^{\circ}$, the Relativity hypothesss is this: The measued speed of light (electrmag. netic uaves) uri! io the same, whatever the motion of observer or source Thas is quite contrary to com-
mon sense, we should expect to meet light faster or slower by running agaunst it or with it. Yet thes is a clear application of the reahstic newpoint to the experimental fact that all experiments with light fail to show the observer's motion or the motion of any "ether wind" Pour this lypothesis into the logic machine that prevously answered, Inconsistent", but remore the built-in "geometry rules" of space-\&-tume and motion, with their Galilean Transformation Ask instead for the (simplest) new rules that will make a consistent scheme. However, since Neutonian mechanics has stood the tost of time. in moving ships and trains, in the Solar System, etc.,


Fic $31-28$
the new enies mett exduce the (aiden Trans
 phen There as onk sae reasonatere sherne the
 b: Emsec:



$: \frac{x-v t}{i l-t^{2} c^{2}} ;=y=-=: \frac{t-x t}{\sqrt{1-t^{2}} c^{2}}$
unt these tur: mat: the aeserse trinsformation, with

 where $c$ is the speed of haght in coc:atum That speed is involved essentally ta tie new rules of measurement. bexatse the new imnsformation was chesen t, make ail attempts to measure that speed weld :... s.r:ne ...is: er And t!e shanctr:cal form shous that absolite motion is never revealed be exper:ment. We ean measare relathe motion of one er
 4- At morna

Of course the nen transformation aconuncs fetie Mrehelson-Morlew-Mi!ler nuil result-t was chasea - ioss It ass, accounts for aberration. $\mathfrak{j}$ reA. ig iove sar c aberation whether the star moves : we do But it nodifes Newtonian mech.mess In the: " - 1 we have a chorec of troubles the old tranion $\therefore$.. upseis the fonn of electromagnetic la" $t$ Bew transformation upsets the form of me 't maca: laus Over the fult :rige of experment. inse spends as $x-1$ as . . the old electronnagnetio wh seem in :e:na:n gu, simpie descriptuons of naiure but ${ }^{\circ} \mathrm{c}$ mechanacal laus do fail, in their class:$\therefore$ f ind it hagi ore eds so we cioose th. neu

 na: :" ealle oin w] nechanacal experments





 -

eould asser: that mechamea! evperinents wall fal to rebeal uaform notion through -space ${ }^{*} \cdot$. Whera Einstern exteaded the assertion of fultere to expenments with hight. be found it necessan to nate ineasurements of length and tunc, and therefore mass, different for obsen ers with difierent motions We shall not show the steps of the logic machue grandag out the transformation and its ir plications. but sou may •ust them as routune algebra: We. shall tollow custom arr! call the larentr Trans formation

## Implications of the Loren: = Trantiormetmon

Take the new :aodifeci wemetrv that wall fit the expermental mformathon, and argue from it low measurements by difermat obeners will empere

$$
\begin{aligned}
& \text { f:c 31-:3 }
\end{aligned}
$$

t) the ather Thet $1: 2$ age to use stamiatd
meawnap mastiments if ilentikal construction

Return to our two observers $\varepsilon$ and $\varepsilon^{\prime}$, who operate uath identical meter steks clochs. and standard hulograms $\varepsilon$ and his coordinate framework are mow. ing with speed $\varepsilon$ relathe to $\varepsilon$. and $\varepsilon$ is moving backwat! with sperd I rehatre to $\varepsilon$ ' The trans.


 artial frane If we had alesa s experme. nidi in a tossing shep, "e shoukd not hute for mulated th womp - law : Fir ierents. sor standard tex.e. There is a sumple versson
 1. hod by \etiven, Iandan. 15th edn, 1955)
formatons $\varepsilon \rightarrow \varepsilon^{\prime}$ and $\varepsilon^{\prime} \rightarrow \varepsilon$ are ompictele simmetrical, and show onk the rel.etse selocitvi- the same in both cases-with no indication of absolute motion, no hatat as to whech is "realle noving"
The reoults of arguing from the transiomnation differ stran; ely from carler econmon sense but only at exceedingle high speeds. An obsen er flying past a laboratory in a phane. or rockei, would app? Gahlean Transformations safely. He would agree to the ordmary rules of sectors and moton, the Dewtentan liws of merhanes
The spend of lich: , $c$, is huge
$c=300.000,000$ meters sec $=186.000$ miles 'sec
$=-3$ bilhon $f t$ sec $\approx 7.00$ million mules hour
$=1$ f: nonasecrind, in the latest term:nology.
For rehative metion with ans ordnary veloc:ts t , tae fructoon $e$ c is tuny, $t^{2} c^{2}$ stall smaller. The factor $1 \overline{1-c^{2}}$ is 1 for all practic: purposes, anci the time-lag $x t e^{:}$is neglegrble-si we have the Gaulean Tra sformation.
Now suppose $\varepsilon^{\prime}$ moves at tremeadus speed rela. tive to $\varepsilon$. Each in his own local lab will observe the same mechanical laws, and an! beam in light passing through both labs will show the same speed. universal $c$, to each cbserver. But at speeds like 20,000 miles sec. 40.006 . 60.000 and up to wards the speed of light, experimenter $\varepsilon$ would see surpr:sin; thangs as $\varepsilon^{\circ}$ and his iab whzz past. $\varepsilon$ would say; The sily fellow $\varepsilon$ as using inaccurate spparatus

H.s neeter stack is shrunken-iess thas imi :a, ee meter fiss clock is running slow-tak:ng mare : : : : one of my true scronds for :ach thek " Ve, uns: : : $\varepsilon^{\prime}$ Eaxd notheng wrug ta his cun lakoraters ina: sees $\varepsilon$ and has lab moving aw.u bachwari., a: is says, "The sill, fellow $\varepsilon$ - his mete: © $\because 6 \mathrm{~h}$ is shrunken . . clock aunning slow ${ }^{-}$
Suppose $\varepsilon$ measures and chechs the appar di, used b: $\varepsilon^{\prime}$ just as thes are passing $\varepsilon$ finis the anc:stick that $\varepsilon^{\prime}$ holds as standard sirunk to $\backslash \mathbf{i}-\varepsilon^{=}$. meter. $\varepsilon$ finds the standard clock tha' $\varepsilon$ ' huids :- $\because . t k$ secontis is tacking longer periods, of $1 \backslash 1$-it. . second And $\varepsilon$ finds the 1 kg standard mass that $\varepsilon^{\prime}$ holds is greater, $1 \sqrt{\prime-z}=c^{2} \mathrm{~kg}$ These a:e changes that a "statwonary" obser er sees :n a mure ing laborator:: but. equails, a morme obserier "uatcing a "stationary" laboratorv sees the same peculsarities. the stationary meter stuch shorter. clock running slower, and masses increased. Tree Loren'z Transformations $\varepsilon \cdot-\varepsilon$ and $\varepsilon-\varepsilon^{\prime}$ aressm. metrical If $\varepsilon^{\prime}$ and $\varepsilon$ compare notes ther will g!a:rel hepelessly, since each amputes the same croos i. the othrr! Along the direction of relatne mothon each sees all the other's apparatus shorak. ciea electrons. Each see, all the other's clocks runa:og slowly. even the wbrations of atoms Acros; tie motion, in $y$ - and $z$-ditections, $\varepsilon$ and $\varepsilon^{\prime}$ agree in this sumnetrical "relatmaty" ve see the same th:-: in the other fellow's laboratory, $:$ hether $h e$ as mas. ing or ue are Only the relatiec mothon between as and apparatus matters-we are lef! wihout ans hat of being able to distingush absolutc motion through space.
The shankage-factor and the slowing-fac:ur are the sarac. $1 \sqrt{1-c^{*}} c^{2}$ This factor is practicall 1 for all ordmars values of $t$, the relative speed between the two observers Then the transformation reduces to Gallean form whe:e geometrs fellows o,i: old "common sense." Watch a supersonic plane tying away from you 1800 anles hour $:=\frac{2}{2}$ nile sec For that speed. the factor is

$$
\frac{1}{1-\left(\frac{1}{156,000 \text { mics sec }}\right)^{i}} \text { or } 100000000 \times 0 \text { on } 1
$$

The plane's length would seem shrunk, and a chek ticking slower. by less than half a bilhonth $q 1 q$ At $7,000,000$ moles homr (nearly 1100 of a the factor rises to 100005 at 70.000000 males hoir it -s 1005 . mahing a ing chinge in length
Untal thas century, scientists newer experi:nente! wht speeds dpproaching the speed of !'ght-ercept for hight atself, where the difference is paramouat


Nouzdays we h. e protons hurled out from small cyclotroiss at $2 / \mathrm{ll}$ of $c$. making the factor 1.02 . electrons hitting an $X$-ray target at 610 of $c$. making the factor 1.2 . beta-rays flung from radioacive atoms with 98100 of $c$. making the factor 5 . and billion-solt electrons from giant as 'zators, with . 99999988 c , íactor 2000.
Among cosmic rays we find some very energetic particles, mu-mesons. some with energy about 1000 millon electron - volts moving with 199200 ) of the speed of light. For them
$1 / \sqrt{1-\varepsilon^{2}} \overline{c^{2}}=1 \sqrt{1}-i 99^{2} / 200^{2}=1 \quad$ 六 $\frac{1}{100}=10$

Vou these mesons are known to be unstable, with lifetime about $2 \times 10^{\circ} \sec$ ( 2 microseconds) Yet the: are manufictured by collsions higi up in the atmosphere and tale about $20 \because 10$ * secords on the trip down to us It seemed puzzing that the. could last so long and reach us. Relathity removes the puzzle: we are loohing at the fiving nieson's internal ife-time-clock. To us that is sloned by a factor of 10. So the flying mesor 's lifetime should secret to is $20 \times 10 \times$ seconds Or. from the meson's oun point of vew: its lifetime is a normal 2 microseconds, but the thickness of our aimosphere, which rusines past $i t$, is foreshortened to 1 in of our estimate-so it ean make the shrunk trip in its short lifetime

## Mecsuring Rods and Clocks

We used to think of a measuring rod such as a mete: stick as an unchanging standard, that could be moved about to step of lengths, or pointed in different directions. without any ciange of length. Truc, this was an idealuzed meter stick that would not warp with mesture or expand with some temperature ehange. but we fc!: no less confident of its properties. Its length was invaricnt. So was the time between the ticks of a good clock. (If ue distrusted pendulum-regulated clocks, we could look forward to completely constant atomic elocks. 1 Now. Relatwity warns us that measuring reds are not completely nid with invanant length. The whole adea of a rigid body-a harmless and useful idealization to 19th-century physicists-now seems misleading. And so does the idea of an absolutely constant stre-m of time fowing independently of space. Instead, our measurements are affected br our mojion. and oniy the speed of light. c, as ineariant. A broader view treats $c$ as morely a constant scale-factor for nur choice of unit in a compound space- $\&$-time. which different uoservers shice differentls.

## Changes of Mass

if length-and tine-measurements change. mass must change too We shi" now find out hox mas, must ehange. when a moving observea estimates it. by following a thought-experinent aiong hines sis. gested by Tolman. We shall assume that the conservation of momentum holds true in any (iner'u! frame) laboratory whatever its speed elative to the observer-we must ching to some of our working rules or we shail land in a confusion of urnecessary changes.
Consider $\varepsilon$ and $\varepsilon^{\prime}$ an their labs. moving with relative velocitv $t$ in the $z$-direction Suppose they make two platint on blocks. each a standard hilogram. that they know are sdentical-they can count the
atoms if necessary. Each places a $1 \cdot \mathrm{~kg}$ block at rest in hus lab on a frictionless tat!e just as they are passing each other $\varepsilon$ and $\varepsilon^{\prime}$ stretch a long lught sparai spring beturen their blochs. along the $y$-dreeton They let the sprung tug for a short whale and then remove it. leaving each block wath some $y$ momentum Then eacl expermenter measure: the $y$-velocit! of his block a ad calculates its momentum.


F:G 31 今3. Two Oiseatens Vfanchace Masses

- 1 th: Hhtexpemment :', Snd hou mass cepencs on speed of ciject :elat:- e :o bsevere' esais. I have 1 hg
 - Boun $\varepsilon$ thas líc. and I sec that he re-seds its velown as 3 -ucters sec. bea I kace hiss elcel is turkin: sioul. so that the wlocon of has lump is less than ₹ nete:s 'sec Therefose has hamp has: 5 merectailhe

They coinpare nows. each records 3 neters sec for nis block in ius oun framework. They conciude: equal and of. ssite velocities. equ al and opposite momenta Tt are pleased to adopt Newton's Law Ill as a woria e ruic Then $\varepsilon$, waiching $\varepsilon^{\circ}$ at work. sees that $\varepsilon$ ' uses a clock "hat runs slowly (but they agree on -ormal meter sticks in the $y$ dhections '. So $\varepsilon$ sees th. $t$ when $\varepsilon^{\prime}$ said he fieasured 3 meters trave ${ }^{1}$ in i sec. " was "realle" 3 morters in more-than. 1 . scoond as $\varepsilon$ us. ld measure it by hes clock. Therefore $\varepsilon$ computes dhat ...? ity as smaller than 3 meters/serond by $\sqrt{\prime} \Gamma$ Nerion 111 and momentum-consertation. $E$ roncludes that, smee his ou n block acqured momen: an $1 \mathrm{~kg}-3$ meters see the other. wheh he entulates , monam chower must have greater mase"-m.
areased by the factor 1 \1-cre Whle that block is driftung across the table after the spring's tug. $\varepsilon$ also sees it whizzing along in the $x$-direction. rable and all. wath great speed $e$ Its owner. $\varepsilon^{-}$. .t rest with the table, calls his block 1 kg But E , who secs it whizzing past, estimates its mass as greater. by: 1化 $\bar{c}$.
This result applies to all moving masses mass. is we commenly know it, has different values for different obsen ers. Post an observer on a moving - ody and he will find a standard walue, the "restmass," identical for every electron. the same for et $n$ proton, standard for every pint of water. cte. But an observer moving past the body. or seerg it move past him. wall find it has greater mass $m=\frac{m_{0}}{\sqrt{1-t^{2}, c^{2}}}$. Again, the factor i $\sqrt{1-\bar{t}} \cdot \overline{c^{2}}$ makes practically no difference at ordinary speeds However, in a aycloton. accelerated ions increase their mass siguticantly. Thes take too long on thers wader trips. and arme tate unless special measures are taken Electrons from billion-volt accelerators are so massive that they practically masquerade as protons.
For example. an electron from a 2 -millior-solt gun emerges nth speed about 294.000 .000 meters sec or $098 c$. Thie factor $1 \sqrt{1-(9801 \%} c^{2}$ is $1,1-i 95100 \% \approx 1,7100=5$. To $:$ sta. tronarv observer the electron nas 5 times its erstmass. - Another way of puitung ths is. that ciectron's kinetic energ. is 2 millon elect on - voits. the energ: associated with an electron's $r$ 'st-mass is half a million ex. and therefore this electon has K.E. that has mass 4 test-masses. and that $w i \cdot h$ the originel rest-mass makes 5 rest-masses. ?
This dependence on speed has been tested by $\mathrm{d}-$ fecting very fast electrons (beta-rays) with electric and magnetic fields. and the risults agree excellentiz with the predicuon. Another test: in a cluad chamber a tery fast electron hitting a stationciry electron ("at rest" in some atom of the wet air) does not make the expected $90^{\circ}$ fork In the photograph of Fig. 31-34. tie measured ang'es
: Suppose $x$ and $\boldsymbol{c}^{\prime}$ are pisting each other wath relative welocty 112000 miles sec Then a sers the :loch used by E funmas slow. ucking oace every 12 seconds So he hows the block beionging to $e$ has belocity 3 meterist 2 secs or 25 meters sec lis oun bloch has momentim $1 \mathrm{~kg} \cdot 3 \mathrm{~m} /$ 25 meters sec His oum bloch has momentimi $1 \mathrm{~kg} \cdot 3 \mathrm{~m} /$
sor To preserie momentom conservation. $h$ : must say that sor To preserve momentrm consen ation. he must say that
the other iloci has menentum 12 kg . $25 \mathrm{~m} / \operatorname{son}$ So he


- To the movang ele tron. ar to a setgibion flyng along becrie it. its mass is the nomal rest-mass. and it is the experinnonier - -hing towards it whe has 5 tumes his normal iect nuass and as sfaushed to ${ }^{2}$ shis nomal :hackness

 in cithen tripresson of noticeable inerase of mass at ordinary to the spered of hight. and the ta, give a in "then tropresson of noticeable inctrase of mass at ordinary speeds Thas graph is a copv of the muss-groph thrie, with comminn:s)
urree "ell with those predicted by Rehturaty for a morate mass 12 im hitting a a vonary mass $m$. in an elastac collision The tracls are curved because th ore ads a strong mo..znetic field perpendienlar th the peture Measuremerts of the curvatures whe the maneretum of each electron after collu:rn. and the momentum of the bombarding
electron before colliston Measurements of the angles shown in the sketch confirm the proportions of these momerita. If non-rolatuvistic mechanics [ $\mathrm{K} E={ }^{n} \mathrm{~m} v^{\circ}, \mathrm{e}: \mathrm{c}$ ] is used to calculate the masses, assuming an clastic collision, the projectile's mass appears to be about four tinies the turget partucle's mass lie the trachs look like those of an electron-

ELASTIC COLLISIONS



(a) Collis:on of wipla-p. Thle wib stationary atom Fien wth its hagh eneras. in stphepint le irom a ratoroctive atmen has a rperd that is less that: $01 c$, so its mass :s not
 it hiss a statonan parta ir iHe ' of its ouna awo lluha bivcrose in atom as idrict. it shous to greaier mas

 tomars one, the incled $\begin{aligned} & 1 \\ & \text { ti, tr the fore has :moth }\end{aligned}$ $\because \mathrm{G} \cdot \mathrm{t}$ mus

ELECTRONS COLLIDE
(1) 6

(c) C! ud-chamber phomogeaph of serv ixs electron conadIng whth a situnart ane photocrapi. in 11 R Citor.「anars" ' y!ehagen!
(i) Mesarme:

\}

[^5]clectron collston, and we do not expect im and $m$
 rclatatitu mechanics $[K E \quad 1 m \cdots m$ \& ,

Then we find a consisient story frem the magne. fie!d atad virr measurements of curs ature we fald
befone colision
projectile had mas 12.7 m sperd 0969 c.
Sunce the track is short and onls vighth eursed. ais radus camot be measured wern precisels, so the projectile's monentum, and thence noss is incertan withon about 68 We vhuki su

AFTER COI:ISIO
projectile had mass $S 4 m$. speed $09436 c$.
target purticle had mass 43 m speed 09.2 Sc
where $m_{s}$ is the standard rest-mass of an clectron: and $c$ is the speed of hagh Before colliston th tota. mas was $13 \frac{1}{1} \mathrm{~m}$, ( inciuding the target , after colLision it was $132 m_{n}$. Mass is conserved in this col-lision-wath:n the 6\% eyperinentu! uncertaminand so is energy, now meavured by mic

## A Mcan:ng for Mass Change

There is an easy physical interpretation of the change of mass th, extra miss is the mass of the bodv's kineti" energ. Tr some algeb 1 , using the binomial thenrem to express the :- as a serie's for farl! low -peed

$$
\begin{aligned}
& m=\frac{m,}{\sqrt{1}-\mathrm{t}^{-}} \\
& =\mathrm{m}\left[1-\frac{i}{i}\right] \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { - RFSTT-VASS-KF } c^{2} \\
& \text { preds } \\
& =\text { REST-VIISS... MATS OFK. }
\end{aligned}
$$

## Maxmum 'apecil $c$

As a body's speed grows ticarer to the spend it light at becimes inc rearmely harder to accelerate the mas serps up tom at mfme mane at the
speed of higit Expermenters using "Lnear accel"rators" (which druve eiectrons straight ahead) find that at high energies therr victums approach the speed of light but rever exceed it. The electrons gan more energ: at each successwe push (and therefore more mass) but hardly move any faster (and thereEore the accelerating "pushers" can be spaced evenly along the stream-a welcome sumphification in de. s!gn).
Mass growing touards infinity at the speed of light means unaccelerability growing to infinity. Our efforts at making an object move faster seem to run along the level of constant mass, thll it reaches very high speeds, then they climb a steeper and steeper mountain towards an insurmountable wall at the spred of laght itself No wonder Relativity predicts that no piece of matter can move faster than light, since in attempting to accelerate it to that speed we should encounter more and more mass and thcreby obtan less and less response to our accelerating force

## Adding Velocities, Relativistically

Faster than light? Surely that is possib.. mount a gun on a rocket that travels with speed 3 ic and have the gun fire a bullet forward with muzzle velocity me The bullct's speed should be isc +3 ic or $1^{2}, c$. No. that is a Cahlean addition of velocites We must fird the relatristic rule


 theis estumates of :ts velocity compare ${ }^{2}$ The I.orenti transformation leads to the relation shown, hatucti $u$ as meast. ${ }^{*}$ d bv $\varepsilon$ and $u^{\circ}$ as measured by $\varepsilon$

Suppose $\varepsilon$ sees an object moving in 'us laboratory with velocitv $u$. along the $x$-direction What speed wall $\varepsilon$ ' measure for the object' As meas ired by $\varepsilon$. $u=\Delta x \Delta t$ As measured bv $\varepsilon$ ', $u^{\prime}=\Delta t^{\prime \prime} د t^{\prime}$ and simple algebrit leads from the Lorentz Trus. forma. tion to

$$
u^{\prime}=\frac{(u-v)}{\left[1-\frac{u v}{c^{*}}\right]}
$$

instead of the Gualean $u^{\prime}=(u-v)$ And the inverse relation runs

$$
u=\frac{\left(u^{\prime}+\imath\right)}{\left[1+\frac{u v}{c^{z}}\right]}
$$

Che factor in [ ] is practically 1 for all ordinary speeds, and then the relations reduce to Gahlean form. Try that on a bullet fired by an ordinary rufe inside an ordmary express tran. $\varepsilon^{\prime}$, riding in the train, sees the rifle fire the bullet with speed $u^{\prime}$. $\varepsilon$, sitting at the side of the track, sees the bullet move with speed $u$. lie sees the train passing him with speed $v$. Then $u=\left(u^{\prime}+v\right)$ '\{1]. The Gallean version fits closely
speed of bellet relative to grotad

$$
=\begin{aligned}
& \text { SPEED OF BLLLVET }
\end{aligned}+\begin{aligned}
& \text { SPEED OF TRAR } \\
& \text { RELATINE TO GOL TO TRAI }
\end{aligned}
$$



Fig 31-35b Adong Vifloctries at Orbinamy Speeos Two expenmenters obserse the same bulles., shot from a gun in a moving train with such speeds, the Lorentz transformation leads to the sumple Gallean relations

$$
u=t-c \text { ard } u=u+v
$$

Now return to the gun on a $3 i c$ rocket firing a $\%$ bulle, forward $\varepsilon^{\prime}$ nides on the rocket and sees the bullet emerge with $u^{\prime}={ }^{1} c \varepsilon$ on the ground sees $\varepsilon^{\prime}$ and his rocket moving with speed ${ }^{3} c$, and $\varepsilon$ learns from $\varepsilon^{\prime}$ how fast the guai fired the bullet Then, using the relatisity-formula aicie. $\varepsilon$ predicts the bulletspeed that he will observe, thus
Fig 31-36. Adinc helogitifs at lyhy Hiem Spfeds

(a) Experimenter $\varepsilon$ on ground obserres a mochet moving at is Expenmenter $\mathcal{E}^{\prime}$ ruding on the tosket fires a bullet at $H_{2} c$ relation to the rocket What will be the pered of the bullet, as meavird b, $\varepsilon$ on the krmind?

$$
\begin{aligned}
u & =\frac{u^{\prime}+v}{1+u^{\prime} c / c^{2}}=\frac{1 / 2 c+3 / 4 c}{1+L_{2} c \cdot 3+c / c^{2}}=\frac{1^{2}+c}{1+\frac{3}{8}} \\
& =\frac{(3,1) c}{(1, y)}=\frac{10}{11} c, \text { still ust less than } c
\end{aligned}
$$

SPy ho of béll.ft Relative to grouvo

$$
=\frac{\begin{array}{l}
\text { SPFED OF GUN } \\
\text { RELATIVE TO GROUND }
\end{array}+\begin{array}{l}
\text { SPEED OF BLLLLET } \\
\text { REDATIVE TO GUN }
\end{array}}{1-\frac{\text { SPEED OF BULLET }}{\text { SPEED OF I IGITT }} \cdot \frac{\text { SPEED OF GUL. }}{\text { SPFED OF LIGITT }}}
$$

Have another $t$, 3 , wefeating the limit of velocity, c. Run two rockets head on at each other, with speeds $3 / 16$ and $162 c$ on the ground sces $\varepsilon^{\prime}$ riding on

(b) Expenmenter $\varepsilon$ on ground sees two rockets approaching each other, one with speed $3_{4} c$, the other with speed $1 / 2 c$ What speed of approach will expenmenter $\varepsilon^{\prime}$ nding on
the first rocket see?
one rocket with velocity $v=v_{i c}$ and the other rocket travelling with $u=-42 c$, and he thinks they must be approaching each other with relative velocitv $1^{\prime 2} c \varepsilon^{\prime}$, riding on the first rocket, sees the second rocket movnig with predicted speed

$$
\begin{aligned}
u^{\prime} & =\frac{u-v}{1-u^{2} / c^{2}}=\frac{\left(-4_{c} c\right)-(3 / c)}{1-(-2 / 2 c)\left({ }^{2} c c\right) / c^{2}} \\
& =\frac{-1 / 4 c}{1+3+3}=-\frac{10}{11} c
\end{aligned}
$$

Therr rate of approach is less than $c$. Whate er we do, we cannot mike a material object move taster than hght-as een by any observer

## Speed of Lught

Finally, as a check on our velocity-addition formula, make sure it does yeld the same speed of hight for objervers with different speeds Take a flash of light travelling with speed $u=c$, as observed by $\varepsilon$. Observer $\varepsilon^{\prime}$ is travelling with speed $v$ relative to $\varepsilon$, in the same drection. $\varepsilon^{\prime}$ observes the flash moving wth speed

$$
u^{\prime}=\frac{u-v}{1-u v c^{2}}=\frac{c-v}{1-c v / c^{2}}=\frac{c(1-v / c)}{(1-v / c)}=c
$$

Every observer measures the same spesd $c$ for light


Fic $31 \cdot 37$
Tho expermenters measure the speed of the same sample of light Experimenter $\varepsilon$ sees that $\varepsilon^{\prime}$ is running with velocity $e$ in the durection the light is traselires
(No wor der, since the Lorentz Transformation was chosen to produce this ) This certanly accounts for the Micheison-Morley-Miller null results

## Energy

We sebu:ld the Newtoman view of energy to fit Relativity as follows Define moventurs as mu, where $m$ is the observed mass of the body in motion $m=m_{0} / \sqrt{1-v^{2} / c^{2}}$. Define force, $F$, as $\Delta(m v) ~ \Delta t$ Define chonge from potentral energy to KE as work, $F$ - $\Delta s$ Combine these to calculate the K E of a mass $m$ moving with speed $v$ We shall give the result, omitting the calculus derivation.

$$
\begin{aligned}
& \left.m=\frac{m_{0}}{\sqrt{1-c^{2} c^{2}}}\left[\begin{array}{l}
\text { part of Lorent/ } \\
\text { Transformation }
\end{array}\right]\right\} \\
& F=\frac{\Delta(m: 0)}{\Delta t} \quad\left[\begin{array}{l}
\text { Newton Law 1! } \\
{[\text { Relativity forn }}
\end{array}\right] \\
& \left.\begin{array}{rl}
\Delta(\mathrm{KE}) & =F \cdot \Delta s \\
& =F \cdot v \cdot \Delta t
\end{array}\right\}\left[\begin{array}{l}
\text { Definition } \\
\mathrm{ofKE}
\end{array}\right] \\
& \left.K E=0 \begin{array}{c}
\overline{-1 f} v=0
\end{array}\right\}\left[\begin{array}{l}
\text { of KE. }
\end{array}\right.
\end{aligned}
$$

We assign the body a permanent store of "restenergy" $m_{0} c^{3}$-loched up in ts atomic force-fields, perhaps We add that to the K E , then the total energy, $E$, of the body is $\left.m_{0} c^{2}+{ }^{( } m c^{2}-m_{0} c^{2}\right)=n c^{2}$. Therefore total $E=m c^{2}$. Thus apples whatever its speed-but remember that $m$ itself chauges with speed. At low speeds, $m c^{2}$ reduces ${ }^{\prime \prime}$ to

$$
\left(\text { rest-encrgy } m_{0} c^{2}\right)+\left(\text { K.E }{ }^{1} m m v^{2}\right)
$$

For a short, direct derivition of $E=m c^{2}$, see the note at the bottom of the noxt page
Thus view that energy and mass go together acrording to $E=m c^{2}$ has been given many successful tests in nuclear physics. Agan.. and agam we find some mass of material particles disappears in a
nuclear break up. but then we find a release of energ:-radation in some cases, K E of fluing fragments in others-and that energy carnes the missing mass.
The expression for mass, $m=m_{0} \sqrt{1-v^{2}} c^{2}$ follows fiom the Lorentz Trancformation and conservation of momentum. So $E=m c^{2}$ follows from Newton's Laws II and III combined with the I.orentz Transformation.
Then if an observer assigns to a moving body a mass $m$, momentum $m c$, and total energy $m c^{2}$ he finds that, in iny closed system, mass is conserved, momentum is conserved (as a sector sum), and energy is conserved In ais this he must use the observed mass $m$, which is $m_{0^{\prime}} / \sqrt{1-v^{2} c^{2}}$ for any body moving with speed $v$ zelative to him. Then Le is doubling up his clam of conse vation because, if the sum of all the masses $\left(m_{1}+m_{2}+\quad\right.$ ), is constant, the total energy ( $m_{1} c^{2}+m_{2} c^{2}+$ ) must also be constant. If energy is conserved, mass must also be conserved. One rule will cover bain. That is why sorne scientists say rather carelessly, "mass and energy are the same, but for a factor $c^{2}$." In fact, since $c^{2}$ is unversally constant, there is little harm in saying that mass and energy are the same thing, though commonly measured in different units. But there is also little harm if you prefer to think of them still with quite different flavors as physical concepts. And a very important dis'inction remains between matter and radration (and other forms of energy). Matter comes in particles, whose total number remains constant if we ccunt the productron or destruction of a [particle + anti-particle]

## NOTE Dertation of $E=m c^{\prime}$

This short denvation, due to Einstein, uses the expenimental krowledge that when radiation with energy $E$ joules is absorbed by matter, it delivers momentum $E / c \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{sec}$ is absorbed by matter, it delivers momentum $E / c \mathrm{~kg} / \mathrm{m} / \mathrm{sec}$
(Expenmerit shows that presscre of radiatici on an absorbExpenment shows that pressure of radiatici on an absorb-
tng wail is Enengy- R-vNIT-Molume of radiation-beam.
Suppose a beam of Suppose a beam of area A falls on an absorbing surface head-on In time $\Delta t$, a length of beam $c$. $\Delta t$ arrives Then momentuy delivered an at

$$
\begin{aligned}
& \text { - FORCE } \cdot \Delta t=\text { PRESSURE } \cdot \text { AREA } \cdot \Delta t \\
& =(\text { ENERGY } / \text { vOLUME) } \cdot \text { AREA } \cdot \Delta t \\
& =(E: \angle R G Y / A \cdot c \cdot \Delta t) \cdot A \cdot \Delta t \\
& =\text { ENERGY/c }
\end{aligned}
$$

This also follows from Maxwell's equations)


We take two news of the same thougint-experment
parr as no change Radation comes in photons. and the total number of photons does change when one is emitted or absorbed by matter.

## Covanance

Finally, Einstein treated momentum as a vector with three components in space-\&-time, and kinetic energy with them as a fourth, tume-hke, component of a "pervector" Thus, conservation rules for mas anomentum, and energy can be rolled into one great formula in relativistic mechanics The Lorentz Transformation gives this formula the same form with respect to any (steadily moving) set of axes whatever their velocity, We say such a formuld or relation is "covariant." We pr: great store by covariance covariant laws have the most general form possible and we feel they are the most perfect mathematical statement of natural laws. "W'e lose a frame of reference, but we gam a unversally valid symbolic form ${ }^{m_{1 s}}$

## "A W'rong Question"

The physical laws of mechanics and electromag. netism are covariant. they give no hope of telling how fast we move through absolute space Thus brings us back to Einstem's basic principle of being realistic. Where the answer is "impossible," the question is a foolish one. We are unscientific to imply there is an absolute space, as we do when we ask "How fast . . . through space?" We are begging the question, inside our own question, by mentu ning space. We are asking a wrong question,
is Frecenc keffer
(A) Place a hloch of natter ut rest on a 1 . tonless table Give it some energy $E$ by firing two chunks ;adiation at 3t, 3 , $E$ from due East, $H E$ from due West $T$, block absorhs the radiation and gains energy $E$, but its net gan of momentum is rero it stays at rest ( ( ) Now let a running menturn is rero at stays at rest (B) Now let a running
observer watch the same cuent He runs with specd it due observer watch the same cvent Me runs uith specd e due
North, but according to Relativity he can equall, well think North, but according to Relativity he can equall, well think he is at rest and see the table, etc moving tow:rtos him with speed $u$ due South Then he sees the blool moing South with momentum Ifu He sees the two chunks of radiation moving towards the block, each with speed $c$ bat in directions, slanted southward uith slope $v / c$ (This is like the aberration of starhght) In his viou, each churik has momentum ( $1 / 2 E / c$ ) with a southward component ( $\% 2 E / c$ ) $(v / c)$. Thinking himself at rest, he sees total souchward momentum $M v+2(1 / 2 E / c)(v / c)$. After the has absorbed the radiation, he still sees it moving Sputh with the same speed r-since in version (A) we sav that the hlock gained no net momentim However, tie block may gam some nass, say $m$ Find out how Fig $m$ is by tristing conservation of momentum

$$
\begin{aligned}
\quad M v & +2(1 / 2 E / c)(v / c) \\
\therefore \quad m & =(M+m) v \\
\therefore \quad \text { or } \quad E & =m c^{1}
\end{aligned}
$$

where $m$ is the mass gained when energy $E$ is ganned
hke the lawyer who sals, "Inswer me 'ies' or no. Have rou stopped beathg sour wife The answer to that 1, " 1 reason.ble man doen not unnwer unreasonable quectoms' Ind Einsten mught uuggest that a reasonable scentits doen not ath umu casonable questin $n$,

Sumultanety

The observers $\varepsilon$ and $\varepsilon^{\prime}$ do not merels see each other's cloch rumung slowh, worse still, elocks at different distances seem to disagree Suppose eath observer posts a sernes of clocks along the $t$-directon m his l.boratory and sets thein all goung together And when $\varepsilon$ and $\varepsilon$ pass each other at the ongm, the: set their central clocks in agreement Then each will blame the other, saying "His clocks are not even suluchrouzed He has set hus dhstant clocks wrong by his own central clock--the greater the distance, the worse his mistake The farther I look down bes corrder r , along the direction he is moving, the more he has set his clochs there backther, read early, behnd my proper tame tad lookmy back along has corridor, opposite to the drection of his motion, I sec his clocks set more and more forward, to read later than me correct tme" (That judgnent, which each makes of the other's clocks, is not the result of forgeting the tume-delay of sering a cloch that is far wave Each observer allows for such delays-or reads one of his own clocks that is close beside the other',-..nd then firds the disingreement Thus disagreenent about sett:ur of remote clocks belongs with the veew that each obsere er takes of clock rates F.ach cla ms that all the other's clocks are runnug too slowh so they should not be surprised to find that thi ir central clochs. orgmadiv ,tnchronzed to the orgin. dasagrec after a while Each savs "Hes central clock. that was opposte me, has moved ahead and was rumning ton slowly all the while so no wonder its hunds h.ue not mox ed aro, ind as fast as mveloch.")
$\varepsilon$ ol sries his own row of clochs theking smultancouslv all wi, ،greement But $\varepsilon^{\prime}$ does not find those tuhs sumuleaneous Events that are sumultaneous for $\varepsilon$ are not simultaneons for $\varepsilon^{\prime}$ Thus is a serious change from our common-sense vicw of universal tume. but it is a part of the I.orent; Transformation In fact, the question of sumultaneter plavea an essental role in the development of relativtr. by Poncaré ard Einsten Argung with thought-mperiments that heep " $c$ " constant. vou can show thu, change is necessary The foliowing example 11lustrates this
Suppose $\varepsilon$ and $\varepsilon^{\prime}$ have their laboratorics in two transparent raiiunad coaches on parallel trichs, one moving with speed o relative to tive othor, Just


SAAE CLOCKS AS REFORTED E) :'


Fi 31-38 "Smeltavaou" Ciock Sfithos Eacherpermenter setshas ouri clochs all iaderement (alloumg carefulls for the time taken b, any hight (alloung caretals for the time taken by any hight ugnak he ases in loohing at them) Fuch crperimenter
frids that the other man's clocks disarree among fods that the other man's clochs disarere among
themseltes, progressuve with dotance (Thit is, after themsede es, progressive is with ditance (Thit is, after
he has allowed carefull for the time tahen by the haght signals he use in cheching the other man's clochs agunst his oun) The sheteh shous a scries of cloche all fived in the fra mework belongeng to $\varepsilon$ As adpuste 1 and obsersed ho $\varepsilon$, the $v$ all agree thes are swhehronized is mustigate 1 by $\varepsilon^{\prime}$ those chechs disatree with. each other The lower shetch shous what $\varepsilon$ ' fin 's by comparing those clochs simultaneomls (as he, $\varepsilon^{\prime}$, thanh) with hrs own cloch The tuo shetches of docks dis.oree because each experimenter thans he comfares them all smaltaneousls but disaurees with the other man's idea of smultaneits
as the coaches are passing, $\varepsilon$ and $\varepsilon$ ' lean out of their center windows and shake hands They happen to be electrically charged, + and - , so there is a fash of hght as they touch. Now consider the hight from this flash. Some of it travels in each coach starting from the mid-point where the expermenter is standing $\varepsilon$ finds $2 t$ reaches the front and hand ends of his coach simultaneously And $\varepsilon^{\prime}$ finds it reaches the ends of his coach simultaneously: Each considers he is in a stationary coach with inght trat elling out from the center with constant speed $c$ But $\varepsilon$ can also observe the light flash reachang the ends of the other coach that carries $\varepsilon^{\prime}$ He observes the events that $\varepsilon^{\prime}$ observes, but he certanly does not find them simultaneous, as $\varepsilon^{\prime}$ clams $B \dot{y}^{\prime}$ the time
the flash has travelled a half-length of the $\varepsilon^{\prime}$ coach, that coach has moved forwand past $\varepsilon$ As $\varepsilon$ sees it, the light travels farther to reach the front end of that moving coach, and less to the hind end. So $\varepsilon$ sees the flash hit the hund end first, while $\epsilon$ 'clams the hits are sumultaneous ${ }^{10}$ (Reciprocally, $\varepsilon^{\prime}$ sees the light reach the ends of the coach carrying $\varepsilon$ at different instants, while $\varepsilon$ clams they are simultaneous.) You wall meet no such confusion in ordrnary life, because such disagreements over prority arise only when the events are very close in time, or very far apart in distance. Where events $P$ and $Q$ are closer in tome than the travel-time for light between them, observers with d.ferent motions may take different views: one m. $y$ find $P$ and $Q$ simultaneous, whale another finds $P$ occurs before $Q$, and


$\underline{\varepsilon}$ sees fle $h$ hü his corctis más simudraneousm

$\varepsilon^{\prime}$ sees flast hit fus coachis mais simulitantousty

$\mathcal{E}$ ser flash fuit both enads of fi's coacti sumulianeousfy, Gut the mads of $\varepsilon^{\prime}$ coach at diffient times (simitanty for $\varepsilon^{\prime}$ )

Fig. 3: 29 Thoucht-Experiment
To show that events th are smultaneous for one observer are not sunultanciu for an observer moving with a diterent velocity
stall another finds $P$ later than $Q$ To mantan Fimstein's Relativity, we must regard time as interlocked with space in a compound space-time, whoes shing into separate time and space depends someuhat on the observer's motaon If we accept this compound space-teme system, we must modify our philosophy of cause and effect.

## Cause and Effect

Earher science was much concerned with caysalhty Greeks looked for "frst causes", later scientusts looked for immednate causes-"the heating caused the rock to melt"; "the pressure caused the hquid to flow", "the alpha-particle caused the son: to be formed" It is difficult to define cause and effect "P causes $Q$ ". what does that mean ${ }^{2}$ The best we can say is that cause is something that precedes the effect so consistently that we think there is a connection between them
Even in common cases (hike stress and strain or po. and current), we prefer to say $P$ and $Q$ go together: we still look for relationshys to codify our knowledge, but we treat $P$ and $Q$ as cousins rather than as parent and chald

And now Relativity tells us that some events can show a different order in time for different observ-ers-and all obser:ers are equally "nght" The sketches of Fig 31-40(e), below, show how various observers at an event P , here-notw, must classiny some other events (eg, $Q_{1}$ ) as in the absolute future, some other events (eg, $Q_{2}$ ) in the absolute past, and some events (e $\mathrm{g}, \mathrm{Q}_{3}$ ) in the absolute elsewhere (as Eddington named it) where observers with different motions at $P$ may disagree over the order of events $P$ and $Q$

20 Note that the disagrecment over simultancity is not due to forgettung the time taken by light signals to bring the mformation to e;ther observer We treat the problem as af each formation to e;'her observer We treat the problem as af each
observer had 2 whole gang oí perfectly trained clockwatchers observer had : whole gang oi perfectly trained clockwatchers
ranged along lus coach to make observations without signal ranged along hus coach to make observations without signal
delays and then report at leisure The observers compare delays and then report at lessure the observers compare
notes (eg by radio) Then each has an obvious explanation of the other man's claim that he saw the light flash reach the ends of his own coach simultaneously, "Why, the silly fellow has set hus clocks askew He has a clock at each end of hus coach, and when the light flash hit those end clocks they both showed the same instant of time--I saw that, too But he is wrong $n$ saying his end clocks are set in agreement I can see that he has set his front-end clock back by my standard, and hus hind-end clock ahead 1 can see that the Rash had to travel farther to reach his front end. And my clocks tell me it arrived there later, as $I$ know it should But since his clock is mis-set, early by mine, the latein setting his clocks just cover up the direeence of transittume for what I can see are different travel-distanc: to the ends of his coach." As in all such relativistic romer to the each observer blames the other for making exactly the same kind of mistake

FAIRS OF EVENTS
on a time and distance mar
galilean time and distanie maf
for cesfrver s. and moving C.SERIERE'



TWO ORSERVERS MOVINGIERY FAST RELATIE TE EACH OTHER RECORD EVENTS F \& $Q$

IN GALILEAN WことLE

in lQrentz world


Fig 31-40 Ciharts of Space (One Diminsion) and Time
(These fancaful shetches are hughly restracted. all the events shown occur in one irraight line, in a one-dimensional space. along an $x$-axis
In the Lorent: picture, a very high relative velocity between $\varepsilon$ and $\varepsilon^{\prime}$ is assumed The distortion of the $x^{\prime}$ and $t^{\prime}$ system on the Lorentz picture shows the view taken by - Of course, $\varepsilon^{\prime}$ humself would take an "uncistorted" view of his own system, but $\boldsymbol{\varepsilon}$ ' would find the $x$ and $t$ system "distorted "
It 's not possible to show the essential symmetry here, so the Lorentz picture should only be taken as a suggestion. taken interally, it would be misleading)
(a) An event that occurs on the straighi Lne ( $x$-axis) is shown by a point on this chart Distance dong shows uhere the event occurs on the line. Distance op shows when it occurs Event $P$ precedes event $Q$ in time It may be sensible to say that Pcauses Q , for some types of event
b) A moving experimenter carres his ongin for distance with hurn On the Grillenn system he uses the same tumescale as a tationary experunenter
(c) What a Gahlean transformation between two experiinenters, the lines for each hour by the clock are the same for both observers, and parallel to the axis, $t: 0$.
(d) The Lorentz transformation between two , spermenters filts one coorchnate system of space-\&-tune relative to the other (through a negligible angle, except wher speed of $\varepsilon^{\prime}$ relative to $\varepsilon$ approarhes $c$ )

Then an event $Q$ that follows event $P$ in time for one expermenter may $P$. cede $P$ for another-but only if the events are so far apart that a lisht sagnal from one event events are co far apart that a light signal from one event
could not travel to the place of the other event and reach it before the other event occurred there


Fse 31-40it !after Lddmgiow?
 a!ong a-ans relatise to $\varepsilon$ the hane uraverw has equation 2 - - - $t$, and marh, all went that $\varepsilon$ (or $\varepsilon^{\prime}$ ) wec at thes mat era wow $t$ hrowng the what of $C$. atoons for tand tume atd math has ous of cients that happen now along the x.aw Howner $e$ will mane a different allow, nime from the arme niv-aou lime wid will on oth a thled "now" line as has 2 ans the lats contmang sat vesw in the formard doen tonn of tme mark the anomum the that $\varepsilon^{\prime}$ conid have for lus - "Me-bluciane $E^{\prime}$ can neser hase relaine whexty


So now we mant be more careful We may keep cauce and eflee t in smple canes such as apples and stomach-ache, or alphat particles and won but we must be "are with events we elone in time, for then dotane apart, that they fall meach other's sbonh.t'te 1 l.simmat

In atomu phesics you will meet other doubts concerning cause and effect Radroactave changes appear to be a matter of pure chance-the future hifetime of an indoridual atom being unpredictable. In the final chapter you will see that nature enforees partal wipredu tabilty on all our howledge. hedg. ang medrodual atome irents with some mavomble uncertame, making it unvise to masist on evact "effects" from enat "cousen"

## The I orertz Iransformatorn as a Rotuton

The shetches of ligg $31-40$ suggest we con throv light of the Lorentr transfommotion if ve leok at the ettect of a sumple rotation of the axes of a comer in $x-y \cdot \mathrm{gr}$, ph 1s the algebra and find the "tromfomation" coment. mes the ole coordinates of a pont, $x, y$, wh the new coondmates, $x^{\prime}, y^{\prime}$ of the same ponit, thas


Kefer - pornt in a plane to $x$ yones Then rothe the axes through mangle't faround the $z$ and the pone. ramamag at its old postom on yete has coordibutes $x^{\prime}, y^{\prime}$ referred to the new axer ('xe the sumbols for the sope of the new raxe, oo that $s$ is tait then as the dugrom shows




 wents in the lower light-cone ( $\left(_{2}\right.$ ) ase in the aboulate past carher than $I^{\prime}$ fon all chorsors But $Q_{2}$ m the wace bex the conesmas the in the fienim for d oft be m the for an oberser $\varepsilon^{\prime}$ whose a-d, ith alomé to so we lat
 thate, wether P' nor Oean card a ther-thes s:mph ocour at different places

$$
\begin{aligned}
& x^{\prime} \text {-ix } \quad \text { bicas } A=(x \cdot y \operatorname{con} A \cos A \\
& =1 \quad y \text { wer } 4-(x+y) \ 1+\operatorname{tin} 4 \\
& x^{\prime}=(x+s y) \backslash(1)+c \mid
\end{aligned}
$$

Smblarh, $\left.y^{\prime}=\left(y-s x^{\prime}\right)(1), ~\right)$
Tha tranformation for sample rotation of axes bass it suare reot planing much the same rule sh in the Lorents tramformatnon In fact we absum the Iarenta form if we replace $y$ be a thac coordmate, thm matead of $y$. wee $t$ multiphed by convin it $c$ and bi the spuare root of $(-1 /$ And unstead of slope $s$ use $i<1$ ct 1 lien. with $y=$ act and $y^{\prime}=$ at $f^{\prime}$ and $s=n c$. the smple rotation-tandfomation is the looratz transformation Tre that That wow a how ther Ionentz transformation can be regarded a a diong of spacede-time wath a different han' for different obersers

The Intaram "Intertal" betueen Tuo Fitents
We can define the "intersal" $h$ betwern wo events ( $x_{0}, t_{1}$ ) and ( $x_{2}, t$ ) br the Pihagorean form

$$
n^{2}-\left(x_{1}-x_{1}\right)^{2}+\left(w t_{1}-w t_{1}\right)=
$$

Hen we en also write the expression that gives $R$, the "moteral" for mother oberreer who records the same two events at $\left\langle x_{1}{ }^{\prime}, t_{1}{ }^{\prime}\right\rangle$ and $\left|x_{0}{ }^{\prime}, t_{2}{ }^{\prime}\right\rangle$ on has coordinates If we then use the lorentz travivormation to exprac $i^{\prime}$ in tems of the first obociser', coordinates, we fund that $n^{\prime}$ is the same is $l$ lae lemente trinsformation heeps
 stmp:on-measured $c$ aswas the vame-n a different wav
jolir \& Whefer suggests a fable to alluntrate the role of ic Suppove the mhabiterts of whand do thear survishg with rectangula rex.rhnite's, but messure Vortis.South dutances moles and East-W'eve ones in fert Then a adeden. permanent Juft of magnetac Vorth throug' an angle A mother the in turn then - stem of axes to the new derection 'Ther ag, mem mare in mites along the new N'S' drection and an feet E'- $\mathbf{N}^{\prime \prime}$ 'Thev in to compute the dosance " between two ponts b Prthagoras $R^{2}=\left(د x^{2}+i^{2}\right)^{2}$, and ther frid that $n$ takes a different whe with the new condmates

Then ther find that the obhem the same shae for $A$ (and a useful one) with both sets of consennotes it the define $R$ by $F^{*}=(\Delta x \cdots$ i
Therr "misternous eswentul f.ector, 2260 . .rrenpomi to $c$ in the relatu astic mendi" in the pareowph itmene Monal $a$ s not on much a muteriots lamitu:g velocits as a unt-changug factor, wheh sugheotic thit tume und space are not utterk different ther form one contimuans with both of tiem me.surable m meters

## Is There a Frameuork of Fucd Space ${ }^{2}$

Thes we hase dewsed, in pectal Relationt, a new geometis and phisies of space- $\delta$-time with our clocks and measuring seales (basic anstruments of physies). conspiring, by their changes when we change obserecrs. to present us with 1 .macrsallsconstant velocity of hght, to limit all moving matter to ${ }^{1}$ esser speeds, to reveal physical laws in the same form for all obsencers nooving with constant selocthes. and thus to conceal fron. iss forever any absolute motion through a fived framework of space, in fact. to render meaningless the question whether such a framework exists.

## HICHER VMLIES OF M.ITHFMATICS AS . 1 I. IVCTACE <br> Methematical Form and Berntly

As a language algebra nay be verv truthful or accurate. and even fruitful but is it not doomed to remain dull. uninteresting prose aud never rise to poetry ${ }^{2}$ Most mathematicins will deny that coubt and claim there is a great beaty in mathematics. One can learn to enjov its form and clegance as much as those of poetry As an example, watch a pair of smuthmeons equations being polished up into elegince Start with

$$
\begin{aligned}
& 2 x+3 y=9 \\
& 4 x-2 y=10
\end{aligned}
$$

Then with some jugging we can get rul of $y$ and find $z=3$. and then $y=1$. But these are lopsided. individual equations. let us make them more general. replaemg the coefficients 2.3, 9. ete , be letiers a. b. c. ete, this

$$
d x-b y-c \quad d x-c y=f
$$

After hravier juggling we find $x=\frac{\mathrm{cc}-\mathrm{Cb}}{\mathrm{ac}-(\mathrm{d})}$ Then more jugeling :s needed to find y These solutions enable us to onke the carher equation and others like then be substitutang the number coeffienent. for a, b. c. ete but unless we had name equations to solve thit would hardh pris. and we seen no nearer to poetry but aow het us be more sostematic We are dealong with $x$ and $y$ as much the same thangs. so we might enphasize the sumbart!
by cathne them a and $x$ To math that change We use at a., a, unsted of a, b, ce and write ax - ax. - a But then we hate the second equations coefferent, We mught call them a : etc. but wen so the two equations do not look quite semmetracal To be farer still, "e call the first let $a^{\prime}$. ele and the second lot a." ete Then

$$
\begin{aligned}
& x_{1}-x_{2}=a \\
& a^{\prime} x_{1}-a_{2}^{\prime \prime} x_{2}=a_{3}
\end{aligned}
$$

These lowh no.ot. but is therr neatness mueh use ${ }^{2}$
 is a gam we need not solve for $x_{\text {a }}$ or $\eta S_{\text {s.mmetre }}$ will show us the answer straght awat . Wote that $r$. and $x=$ (the old' $x$ and $y$ ) and their coeffenents are only distugumhed by the subscripts : and :. if we interchange the subseripts, and : throughout, we get the same equations agam, and thereiore we must have the same whotions We mahe that tiaterehange

 swer for $x$ : (the old $y$, free of charge. The econom:of working way seem small, but think of the increased complevity if we had, say: fise unknowns and five smultaneous equations With this symmetrical sistem of writing, we just sohe for one unknown. and then write down the other four solu-tion- by summetry: Here as form plasing a part that is useful for conomy and pleasint in appearance to the mathematical ex. More than that, the new form of equations and answers is general and universal-in a sense this is a case of covanance. This is the kind of summetrieal form that aripealed to Shawell and Einstein.
This is only a little way towards fi iding poetry in the anguage of mathematies-about as far is "ell-metered verse. The nett stage would be to use simmetrical methods rather than symmetrical forms. e is "determinants". Is the professional $n$ e thematiciun develops the e.rreful arguments which back up his methools. he buikes a structure of logie and form which to his eye is as beantiful as the finest poem

Coome'ry and Sczenee Truth and Cencral Relatienty
Thas, mathematics gies far besond working arthmetac and saus.oge-grmdeng algebra it coen abandons pert defintions and some of tie restricthons of loyse. to encourage full fowering of its growth, hut yet its whole seheme as based on its oun sturtiner pounts, the vews th founders take of
numiers, point). paralle I lime s, tertors. l'ure nathemaths an wors law er xeente The revalts. beng derned bs geod !ogice are susumaticall true to the ongunal as sumptions and defint:on IT hether the real world fits the assumptens seeme at first a matter for experinent We certunly must not trist the assumptions just because they seem reasonuble and obvious. However, they max be more like definitions of procedure, which cise mithernatics, still trise to those definitions, might interpret ans world in terms of them.
We used to thank that when the mathemitieian had developed his world of space and numbers, we then had to de experiments to find out whether the real world agrees wath him For example. Eirchd made assumptions regarding points and lines, etc and proved, or argued out. a consistent geometrv On the face of it. by rough comparison is the real circles and trangles drawn on paper or surveved on land. the results of lus sistem seemed true to nature. But, one felt. more and more precise expenments were needed to test whether Euclid had choser the right assumptions to imitate nature exactly, whether. for example, the three angles of a triangle do make just 180 degrees.:* Relatsitymechanies and astronomical thinking about the universe have ransed senous questions about the most fitting choice of geometry: Mathematicitns have long known that Eucld's version is only ore of several de isable geometries which agree on a small scale but differ radically on a large scale in their physieal and ptilosophical nature.

Special Relatuctty deals with cases where an observer is moung with constont celocity relatuve to apparatus or to another observer. Enstem then developed Gicneral Rclatittt; to de.I whth me.surement in systems $t^{\prime}$ at are accelerating.
What as Gener.d Rrlativity. and now does it affect our vieves of physics-and of geometr?
${ }^{20}$ It probably secms obvous to an that ther do This may he becaise sois have swallowerd Euched's proxf whic-mil
 thontanan deduction Or yer tin huse assureg zourself in-
ductuely bu makirg a paper trangle tearng off the corners ductuely by makirg a paper trangle tearng off the onfners
and assembling hem Suppose, howeve. we wed on a hute ard assembing them Suppose, howerc: we wed on a hute
globe. unthout knou ing it Small tringles, ounfined to the schoormom woild hive a is $0^{\circ}$ sumb But a huge trangle would have a bugger sur For crampur, sue with a (x)' . mer at the N-pole would have night enyls at its base on the equator


F" 31 -1:
(.) I rang a paper taingle (b) Imangle on a sphe:

Einstem was ied to General Rehatu:t by a sugle question Could an obsener in a falling eie tor or secelerat ig tritin really know he is acecler.ting'" Of course ice would notice stringe forces , as m the case of truck and-tivek experments to test $F=\mathbf{M a}$ in an aceelerating ralroad coach * There strang forces act on the track ind make $F:=, M(a$ untrue ) But could he decade by experment between aceeleration of has frame of reference and a nell grawtational field ${ }^{\text {P }}$ (If a arpenter bualds a correctl: tilted hiboratory in the accelerating coanh. the observer will ag,in find $F=1 / 6$ holds, but he will find " $g$ " different. $)^{\circ}$ Therefore, Einsten assumed that no loc.ll eyperments-mechanical. clectrical or optical-couid decale no experiments could tell an observer whether the forces he finds we due to his aceeleration or to a local "gravitation.t" field Then. Emstein sud, the leurs of physics must take the same cssental form for ALL, obser ers, even those who are aceelerating. In other words. Einstem requared all the laus of physics to be cotatiant for ail itunsformations from one frame of reference (or laborator: ) to another That is the essential bass of Ceneral Rel.tivity all phustall lius to keep the same form.
It was obvious long ago that ior mechanical behi ior a gravatational field and an acceleritiag frame of refererce are equisalent Einstem's great contribution was hus assumption that they are completcly equi alent, that even moptical and electrical experiments a gravitational field would have the sanie effect as an accelerated frame of reference "This assertion supphed the long-scught-for link between gravitation and the rest of phisics. .":

The Principle of Equa slence influenees our sew of matter motion and geometry in several wass
(1) Local Phystes for Accelcrated Obsericrs If the l'rinciple of Equialence is true, all the strange effects observed in an accelerating laboratory can be ascribed to an extra force.field. If the laboratoris seceleration is a meters sec*. we may treat the l.boratory as at rest instead if we give evers mass $m \mathrm{~kg}$ an extra force - ma newtons. presumably due to a force-field of strength -a newtons kg Then, with this field included, the ordinary rules of mechancs should upply-or rather the lorentz modifiration of Newtoman mechanies and Euchdcin geonnetry, fust as m Spechil IBelativity.

$$
\text { - Ser cheper } 7 \text { Problems } 30 \text { and } 31
$$

- Gir fdmund Whather mi Frim Enilud ta Eddangton
 bach whitun


## Evimples

(1) Epperimenters in a rambad coach that is ae-colerating-or in a rochet that is being driven by its fuel-will find Newton's laws of motuon appling at low speeds, prowded they add to all visible forces on cah mass $m$ the extra (backward' forec, - ma, due to the equavalent force-field:: Objects moong through the laboratory at wery hgh speeds would seem to have increased mass, ete . just as we alwaws expect from Spectal Relatinat:
(ii) An expermenter weighing himself on a sprmg scale in an elevator moving with downurard acceleration $a$ would obtain the scale rading that he would cxpect $m$ a grant.tional field of strength ( $g-a$ ). (See Ch. 7 , Problem 10.)
(im) In a freely falling box the force cyered bi the equavalent foree-field on a mass $m$ would be mg upuard Since this would exactly balance the weight of the bod, mg downward. ever,thing would appear to be weightless The sume apples to cy ruments inside a rocket when its fuel has stopped druing it, or to experiments on anv satellite pursumg an orbit around the Earth she pull of the Earth's controlling gravty is not felt, because the whole laboratory is accelerating too
(iv) In a rotating laboratory, adding an outward force-field of strength $i=R$ would reduce the local mechanical behavior to that of a stationary lab
(2) Interpreting Gravity. All (real) gravitational fields can be reinterpreted as local modffications of space- $\alpha$-time by changing to approprate accelerating aves so that the field disappears This change gives us no help in mechantal calculations. but it leads to a new meantug for gravity, to be discussed in the next section
(3) "Removing Gravity." If a gravitational field is reall equivalent to an accelcrating frame, we can remove at by gring our laboratory an appropriate acceleration. Common gravity, the pull of the Earth, pulls vertically down It is equivalent to an accelera-
$\therefore$ Ouer 200 years ago, the French philosopi.er and mathematcian dallembert stated a general proncple for solving problems that innolie accelerated motion wild to all the hnown forces acting on an accelerisung mass $m$ an extra force -ma, then treat $m$ as in equulbrrum By adding such "d'Alembert forces" to all the bodies of a complex sistem of nasses in mottor. ne can convert the dynomical problem of reducting forces or moton into a statical problem of forces in equilibrum This is now conmon practice among professional physicists. but it is an artficial, soplisticated notion that is apt to be misleading, se we avond at in elementary teachng It is the basis of the "nomnecr's headacheeure" mentoned in Opinon III of centrifugal force. in
Chapter 21 Chapter 21
tion of our frame, g wertically up it we then let our lab fali through our frame of reterence with acceleration g vertically down. we obserte no effects of grava: Our lab has two arceleratero. the "redl" one of falling and the opposite one that rephuces the gravitational field. The two just cancel and we lave the equivalent of a stationary lab, micro gratitational field That gut means. "let the lab fall freel. and gravity is not felt in at "We do that physteally when we travel in a space shp, or in a frecly-falling elevator Our accelerating framew ork renines's all sign of the gravitational field of Earth or Sums on a small local scale. Then we can lease a boilv to move with no forces and watch it: path We call its path in spac - - $\alpha$-time a stro.tht line and we expect to find s.mple mechanical laws obeved w have an inertial frame in our localite:
(4) Artificial Gravity. Conversely, br mposing large real acceleration we can manufacture a strong force-field. If we trust the Prinerple of Equa alence we expect this force field to treat matter in the same way as a very strong gravitatonal field On this vew", centrifuging increases a atable " $g$ " many thous.andfold.
(5) Myth-and-Symbol Experment To an observer with acceleration a every mass $m^{*}$ seems to suffer an opposite force of stze $m^{\circ}$ at, m addrtion to the pushes and puils exerted on it by hnown igents In a gravitational field of strength geverv mass : $n^{+}$ is pulled with : force $m^{\prime} g$ Here, we are using $m^{\circ}$ for inertial mass, the $m$ in $F=m a$, and $m^{\prime}$ for graw tational mass, the $m$ in $F=G \mathrm{Mm} d$. The Prucple of Equivalence sass that gravatational fichd of strength $g$ can be replaced in effect b: an opposite acceleration $g$ of the obscrver
$\therefore m^{+} g$ must be the sume as $m^{\circ} g \quad \therefore m^{+}=m^{\circ}$
The Pronciple of Equivalence requres gravtatonal mass and enertal nass to be the same, and the My th-and-Symbol Experment long ago told us that ther are. As you will see in the discussion that folli ws. Emstein, in has dev elopment of General Rel.atinte, gane a defper meaming for thas equalite of 1 , c two kinds of mass

## Genera! Reluthenty and Gcometry

Over small regons of space-\&-tune, the Earth's gravety is practically unform-and so is any other
${ }^{23}$ That in why the Sun's grantational pull protuces "no notue.bll field" as ue mose with the Earth aromed its searly orbt (That phrase in the table of feld salues or p 116 was a quibli') Only if inerthe ma., and grastational mass fated to keep exactly the same proportion for different substances would any notuc cable effect oceur Minute differences of such a hand are bemog looked for-uf any are discoverd, thev will hase a profomid offert on our theory
gratational field So we . an remone gravaty for local experments by ha .ng our lab accelerate freely, and it will behave ..he an mertal frame with no gravitational field an object left alone will stay at rest or move in a stragght line, and wath forces applied we shall find $F=$ ma. However, on a grander scale, sav all around the Earth or the Sun, we should Aave to use many different accelerations for our local labs to remove gravity $\ln$ fitting a striught line defined in one , ab 'o Xewtons Law $I$ to its continuation in a neig aboring lab, also accelerating freely, we should find we have to "bend" our stranght line to make it fit The demands of bending would get worse as we proceeded fron lab to lab around the gravitating mass. How can we expliun that* Instead of saying "we have found there is granity here after all" we might say "Euclidean geonetry does not quite fit the real world near the massiveEarth or Sun." The secona choice is tahen m developing General Relativity, As in devising Sperial Relativity, Einstein looked for the simplest geometry to fit the new assumption that the laws of phosics should aluays take the same form. He arrived at a General-Relativity geometry in which gravity disap. pears as a strange force reaching out from matter, instead, it appears as a distortion of space-\&-time around matter.
"From time immemorial the physicist and the pure mathematician had worked on a certan agreement as to the shares which they were respectively to take in the study of nature The mathematician was to come first and analyse the properties of space and time building up the primarv sciences of geometry and kinematics (pure motion), then, when the stage had thus been prepared, the physicist w. to come along with the dramats personae-material bodies, megnets, ciectric charges, light and so forth-and the play was to begin But in Einstein's revolutionary conception the characters created the stage as they walked about on th geometry was no longer antecedent to physics but indissolubly fused with it into a single discipline The properties of space in General Relativity depend on the material bodies and the energy that are present ...is

Is this new geometry right and the old wrong? Let is return to our view of mathematics as the obedient servant Could we not use any system of geometry to carry out our description of the physical world, stretching the world picture to fit the geometry, so to speak ${ }^{2}$ Then our search would not be to find the right geometry lut to choose the stmplest or most convensent one which would describe the

[^6]world wath least stretchng.s If we do, we must reahze that we choose our geometr: but we hate our unversn, and if we ruthlessly make one fit the oti or by pushing and pulling and distorting. then we must take the consequences
For example, if all the objects in our world consisted of so:ne pieces of the elastic shan of an orange, the easiest geometrical noodel to fit them on would be a ball. But if "e were brought up whth an undying belief in plane geometry, we could press the peel down on a flat table and glie it to the surface, making it stretch where necessary to accommodate to the table. We might find the cells of the peel larger near the outer edge of our flattened piece, but we should announce that as a law of nature lie might find strange furces tring to rake the middle of the patch bulge awav from the table-again, a "law of nature." If we sought to simplify our view of nature, the peel's behavior would tempt us to use a spherical surface instead of a flat ene, as our model of "surface-space" All this sounds fanciful, and it is, but just such a discuss $\because$ n on a three- or fourdimensional basis, instead of a two-dimensional one, has been used in General Relawnty: The strange force of gravity may be a necessary result of trying to interpret nature wath an unsuitable geometrythe system Euclid developed so beautifully. If we choose a different geometry, in which matter distorts the measurement system around it, then gravitation changes from a surpnising set of forces to a mere matter of geometry. A cannon ball need no longer be regarded as being dragged by gravity in what the old geometry would call a "curve" in space Instead, we may thinh of it as sailing serenely along what the new geometry considers a straight line in its space-d-time, as distorted by the neighboring Earth.

This would merely be a change of view (and as scientists "e should hardly bother much about it), unless it could open our eyes to new knowledge or umprove our comprehension of old knowledge. It can. On such a new geometrical view, the "curved" paths of freely moving bodies are inlaid in the new germetry of space- $\&$ trme and all projectules, big and small, with given speed must follow the same path. Notice how the surprise of the Myth-and-Symbol fact disappears. The long-stand. ing mystery of gravitational mass being equal to inertial mass is solved Obviously a great property of nature, this equality was neglected for centuries until Einstein clamed it as a pattern property 1 m posed on space $\&$-time by matter
29 You can have your coffce served on any tray, but on
some trays it wobbles less

Even a light ras must follow acure just as much as a bullet monge at hight speed Near the larth that curse would be moperceptible, but storhuht streamase past the Sun should be detected bs an angle of about 0 o(005 degreco, just meanarable bs modern motruments Photograph: tahen dunng total exhpses show that stars wery near the edge of the Sun seem slufted by about 0 (x)06 ${ }^{\circ}$ On the traditoonal ("classical") ven, the Sun has a gravitational feeld that appears to modify the straight-lme law for heght rays of the Enchdean geometrical schenie On the Gencral Relativity wew, we replace the Sun's gravitatienal field br i crumpling of the local geometry from simple Euchdean form into a version where light seems to us to travel slower Thus the light beam is curved slightly around as it passes the Sun-the reverse of the bending of light by hot arr over a road, when it makes a mirage.
Finding this view of gravitation both simple and fruitful-w hen boiled down to simplest mathematical form-we would like to adopt it In any ordinary laborators experiments we find Euchd's geometry gives simple, accurate descriptions. But in astronomical cases with large gravitational fields we must either use a new geometry (in which the mesh of "straught lines" in space-\&-time seems to us shghtly crunpled) or else we must make some conplicating changes in the laws of physics. As in Spectal Relativity, the modern fashon is to make ne change in geometry This enables us to polish up the laws $\because$, hysics into simple forms which hold universall, and sometimes in doung that we can see the possibility of new knouledge

In specifying gravitation on the new geometrical vew, Einstem found that his simplest, most plausible form, of law led to shightly different predictions from those produced by Newton's inverse-square law of gravitation He did not "prove Newton's Law wrong" but offered a refining modification-though this involved a radical change in vewpornt We must not think of either law as nght because it is suggested by a great man or because it is enshrined in beautiful mathematics. We are offered it as a brilhant guess from a great mird unduly sensitive to the overtoncs of evidence from the ral universe We take it as a promising guess, even a likely one, but we then test it ruthlessly The changes, from Newton's predictions to Einstenn's, though fundamental in nature, are usually toc small in effect to make any difference in taboratory experiments or even in most astronomical measurements But therc should be a noticcable effect in the rapud motion of the planet Mercury around its orbit Newton pre-


dicted a sample ellipse, with other planets prodaemg perturlations wheh could be caiculated and observed General Relatuity theor: precicts an extra motion, a very slow slewing around of the long axis of the ellipse by 000119 degree per century When Einstem predicted it, thas tiny motion was already known, discovered long beforc by Leverner. The measured whe, $000117^{\circ}$, century was waiting to test the theory
Accepting this view of cravity, astronomers can speculate on the geometry of all space and ask whether the universe is infinitc or bounded by its own geometric curvature (as a sphere is) We may yet be able to make some test of this question.
There are still difficulties and doubts about General Relat. ity Even as we use it confidently to deal with Mercury's motion, or the light from a massive star, we may have to anchor our calculations to some frame of reference, perhaps the remotest regions of space far from gravtating matter, or perh.ps the center of gravity of our universe. So space as we treat it, may have some kind of absolute milestones This doubt, this threat to a powerful theory, does not irritate the wise scientist he keeqis it in mind with hopes of an in:i-rsung future for his :houghts.

## New Mathematics 'or Nuclear Physics

In atomic and nuclear physics, mathematics now takes a strong hand. Instead of sketching a model with sharp bullet-like electrons whirling round an equally sharp nucleus, we express our knowledge of atoms in mathematical forms for which ne picture can be drawn. These forms use unorthodox rules of algebra, dreamed up for the purpose, and some show the usual mathematical trademark of waves Yet, although they rematn mathematical forms, they yield fruitful predictions, ranging from the strength of metal wires and chemical cnergics to the behavior of radroactive nuclei.
W'e now see mathematics, pure thought and argumont, again offering to present physics in clearer forms which help our thinking, but now far from a servant, it is rather a Lord Chancellor standing behind the throne of ruling Science to advise on law. Or, we might describe mathematics as a master architect designing the bulding in which science can grow to its best

## Relativity

## Anonymous

## RELATIVITY

> There was a young lady named Bright, Who traveled much faster than light.
> She started one day
> In the relative way,
> And returned on the previous night.

Anonymous


9 Parable of the Surveyors

Edwin F. Taylor and John Archibald Wheeler

$$
\begin{aligned}
& \text { Comen: : '06e }
\end{aligned}
$$

Once upon a tume there was a Daytime surve:or who measured off the king's lands. He took his directions of north and east from a magnetic compass needle. Eastward directions from the center of the town square he measured in meters ( $x$ in meters). Northward directions were sacred and were measured in a different unit, in miles ( $y$ in miles). His records were complete and accurate and were often consulted by the Daytımers.
Nighttimers used the services of another surveyor. His nortn and east directions were based on the North Star He too measured distances eastward from the center of the town square in meters ( $x^{\prime}$ in meters) and sacred distances north in miles ( $y^{\prime}$ in miles). His records were complete and accurate. Every corner of a plot appeared in his book with its two coordinates, $x^{\prime}$ and $y^{\prime}$.
One fall a student of surveying turned up with novel openmindedness. Contrary to all previous tradition he attended both of the rival schools operated by the two leaders of surveying. At the day school he learned from one expert his method of recording the location of the gates of the town and the corners of plots of land. At night school he learned the other method. As the days and nights passed the student pizzled more and moic in an attempt to find some harmonious relationship between the rival ways of recording location. He carefully compared the records of the two surveyors on the locations of the town gates relative to the center of the town square:

Table 1. Two different sets of records for the same points

| Place | Dayiime surveyor's axe's ortented to magnetic north ( $x$ in meters, $y$ in miles) | Nightume surveyor's axes orrented to the North Star ( $x^{\prime}$ in meters, $y^{\prime}$ in miles) |
| :---: | :---: | :---: |
| Town square | 00 | 00 |
| Gate A | $x_{A} y_{A}$ | $x_{1}^{\prime} r_{1}$ |
| Gate B | $x_{8} \quad y_{8}$ | $\mathrm{r}_{8}^{\prime} \mathrm{y}^{\prime}$ |
| Other gates | $\ldots$. . | . |

In defiance of tradition, the student took the daring and heretical step to convert northward measurements, previously expressed always in miles, into meters by multiplication with a constant conversion factor, $k$. He then discovered that the quantity $\left[\left(x_{\mathrm{A}}\right)^{2}+\left(k y_{\mathrm{A}}\right)^{2}\right]^{1 / 2}$ based on Daytime measurements of the position of gate A had exactly the same numerical value as the quantity

Daytime surveyor uses magnetic north

Nighttime surveyor uses North Star north


Fig. 1. The town and its gates, showing coordinate axes used by two different surveyors.
$\left.\left[\left(x_{A^{\prime}}\right)^{2}+\left(k y_{A}\right)^{\prime}\right)\right]^{1 / 2}$ computed from the readings of the Nighttime surveyor for gate A . He tried the same comparison on the readings computed from the recorded positions of gate B, and found agreement here too. The student's excitement grew as he checked his scheme of comparison for all the other town gates and found everywhere agreement. He decided to give his discovery a name. He called the quantitv

$$
\left[(x)^{2}+(k y)^{2}\right]^{1 / 2}
$$

the distance of the point $(x, y)$ from the center of town. He said that he had discovered the principle of the invariance of distance: that one gets exactly the same dist. ices from the Daytıme coordinates as from the Nighttime coordinates, despite the fact that the two sets of surveyors' numbers are quite different.

This story illustrates the naive state of physics before the discovery of special relativity by Einstein of Bern, Lorentz of Leiden, and Poincaré of Paris. How nave?

1. Surveyors in this mythical kingaom measured northward distances in a sacred unit, the mile, different from the unit used in measuring eastward distances Similarly, people studying physics measured tıme in a sacred unit, the second, different from the unit used in measuring space. No one thought of using the same unit for both, or of what one could learn by squarıng and conbining space and time coordinates when both were measured in meters. The conversion factor between seconds and meters, namely the speed of light, $c=2.997925 \div 10^{8}$ meters per second, was regarded as a sacred number. It was not recognized as a mere conversion factor like the factor of conversion between miles and meters-a factor that arose out of historical accidents alone, with no deeper physical significance.
2. In the parable the northbound coordinates, $y$ and $y^{\prime}$, as recorded by the two surveyors did not differ very much because the two directions of north were separated only by the small angle of 10 degrees. At first our mythical student thought the small differences between $y$ and $y^{\prime}$ were due to sulveying error alone. Analogously, people have thought of the time between the explosion of two firecrackers as the same, by whomever observed. Only in 1905 did we learn that the time difference between the second event and the first, or "reference event," really has dif-
ferent values, $t$ and $t^{\prime}$. for observers in different states of motion. Think of one observer standing quietly in the laboratory. The other observer zooms by in a high-speed rocket. The rocket comes in through the front entry, goes down the middle of the long corridor and out the back door. The first firecracker goes off in the corridor ("reference event") then the other ("event $A$ "). Both observers agree that the reference event establishes the zero of time and the origin for distance measuiements. The second explosion occurs, for example, 5 seconds later than the first, as measured by laboratory clocks, and 12 meters further down the corridor. Then its time coordinate is $t_{A}=5$ seconds and its position coordinate is $x_{\mathrm{A}}=12$ meters. Other explosions and events also take place down the length of the corridor The readings of the two observers can be arianged as in Table 2.

Table 2. Space and tume coordinates of the sanie events as seen by two observers in relative motio.- For simplicity the $y$ and $z$ courdinates are zero, and tne rerket is moving in the $x$ direction.

| Event | Coordinates as measured by observer who is |  |
| :---: | :---: | :---: |
|  | standing $\text { ( } x \text { m m }:, ~ s, t \text { in seconds) }$ | moving by in rockel ( $x^{\prime}$ in meters. $t^{\prime}$ in seconds) |
| Reference event | $0 \quad 0$ | $0 \quad 0$ |
| Event A | is $t_{\text {A }}$ | $r^{\prime}{ }_{A} t^{\prime}$ |
| Event B | $x_{H} \quad t_{H}$ | $x_{B}^{\prime} i_{\text {B }}$ |
| Other events | .. ... |  |

3. The mythical student's discovery of the concept of distance is matched by the Einstein-Poincare discovery in 1905 of the idea of interval. The intervai as calculated from the one observer's measurements

$$
\begin{equation*}
\text { interval }=\left[\left(c I_{\mathrm{A}}\right)^{2}-\left(x_{\mathrm{A}}\right)^{2}\right]^{1 / 2} \tag{2}
\end{equation*}
$$

agrees with the interval as calculated from the other observer's measurements

$$
\begin{equation*}
\text { interval }=\left[\left(c t_{A}^{\prime}\right)^{2}-\left(x_{A}^{\prime}\right)^{\prime}\right]^{1 / 2} \tag{3}
\end{equation*}
$$

even though the separate coordinates emfloyed in the two calculations do not agree. The two observers will find different space and time coordinates for events $A, B, C, \ldots$ relative to the same reference event, but when they calculate the Einstein intervals between these events, their results will agree. The invariance of the interial-its independence from the choice of the reference frame-forces on's to recognize that time cannot be separated from space. Space and time are part of the single entity, spacetime. The geometry of spacetime is truly four-dimensional. In one way of speaking, the "direction of the time axis" depends upon the state of motion of the observer, just as the directions of the $y$ axes employed by the surveyors depend upon their different standards of "north."

One observer uses laboratory frame

Another observer uses rocket frame

Discovery invariance. of interval

The rest of this chapter is an elaboration of the analogy between surveying in space and relatugg ents to one another in spacetume. Table 3 is a prevew of this elaboration. To recognize the unity of space and time one follows the procedure that makes a landscape take on meaning -he looks at it from several angles. This is the reason for comparing space and time coordmates of an event in two aifferent reference frames in relative motion.

Table 3. Preview: Elaboration of the parable of the surveyors.

| Purable of the surven iors geometr of space | Analog to phases geometri of spacetome |
| :---: | :---: |
| The task of the surveyor ss to locate the postton of a point (gate A) using one of two coordmate systems that are rotated relative to one another | The task of the physicist is to locate the postuon and ...ne of an event (firecrather explosion A) using one of two reference frame, Which are motion relane to or* another |
| The tho coordinate systems. ortented to magnetic north and to North-S sorth | The two reference frames: the laboratory frame and the rochet frame |
| For zonvenence all surveyors agree to mahe postion measurements with respect to a common ongin (the center of the town square) | For convenence all physicists agree to make position and tume measurements with re. spece to a common reference event (exploston of the reference firecracher) |
| The analysis of the surveyors' results is simplified if $x$ and i coordinates of a point are both measured in the same unis, in meters | The analysis of the physicists' resulic as sumplified of the $t$ and $t$ coordinates of an event are both measured in the same units, in meters |
| The separate coordinates $x_{4}$ and is of gate A do nor have the same values respectively in two coordnate systems that are rotated relatue to one another | The separate coordinates $x$ and $t_{4}$ of evens A donot have the same values reppeetively in two reference frames that are in uniform motion relative in one another |
| Invarance of distance The distance ( $x^{2}+$ ,$\left.A^{2}\right)^{\prime 2}$ between gate $A$ and the town square has the same value when calculated using measurements made with respect to enther of two rotatid coordnate systems ( $x_{A}$ and $v_{A}$ beth measured in meters) | Invarunce of the merval The interval $\left(t_{A}^{2}-\right.$ $\left.\lambda_{1}\right)^{1:}$ between event $A$ and the reference event has the same value when calculated using measurements made with respect to elther of two reference frames in relative motion ( $\lambda_{A}$ and $t_{A}$ both measured in meters). |
| Euchdean transformathon Using Euc ludean geometry, the surveyor can solve the following problem Guen the Nightume coordinates $x a^{\prime}$ and $1 x^{\prime}$ of gate $A$ and the relatue inclination of iespective coordinate axes, find the Dayume coordmates $i_{A}$ and $i_{A}$ of the same gate | Lorent: transformathon Using Lorent: geometry, the phystist can solve the following problem: Gwen the rocket conidnates ' $A$ ' and $t_{A}$ ' of event $A$ and the relative velocity between rocket and laboratory frames, find the laboratory coordinates $x_{A}$ and $t_{A}$ of the same event. |

The parable of the surveyors cautions us to use the same unit to measure both distance and time. So use meters for both. Time can be measured in meters When a murror is mounted at each end of a stick one-half meter long, a flash of light may be bounced back and forth between these two mir-
rors. Such a device is a clock. This clock may be said to "tick" each time the light flash arrives back at the first mirror. Between ticks the light flash has traveled a round-trip distance of 1 meter. Therefore the unit of time between ticks of this clock is called $/$ meter of light-travel time or more simply 1 meter of time. (Show that 1 second is approximately equal to $3 \times 10^{9}$ meters of light-travel time.)

One purpose of the physicist is to sort out simple relations between events To do this here he might as well choose a particular reference frame with respect to which the laws of physics have a simple form. Now, the force of gravity acts on everything near the earth. Its presence complicates the laws of motion as we know them from common experience In order to eliminate this and other complications, we will, in the next section, focus attention on a freely falling reference frame near the earth. In this reference frame no gravitational forces will be felt. Such a gravitation-free reference frame will be called an mertial reference frame. Special relativity deals with the classical laws of physics expressed with respect to an inertial reference frame.

The principles of special relativity are remarkably simple. They are very much simpler than the axioms of Euclid or the principles of operating an automobile. Yet both Euclid and the automobile have been mastered-perhaps with insufficient surprise-by generations of ordinary people. Some of the oest minds of the twentieth century struggled with the concepts of relativity not because nature is obscure, but simply because man finds it difficult to outgrow established ways of looking at nature. For us the battle has already been won. The concepts of relativity can now be expressed simply enough to make it easy to think correctly - thus "making the bad difficult and the good easy." $\dagger$ The problem of understanding relativity is no longer one of learning but one of intuition-a practiced way of seeing. With this way of seeing, a remarkable number of otherwise incomprehensible experimental results are seen to be perfectly natural. $\ddagger$

[^7]Simplify Pick freelv falling laboratory


Spires of Contribution Lloyd Sumner

## Outside and Inside the Elevator

Albert Einstein and Leopold Infeld

The law of inertia marks the first great a dvance in physics; in fact, its real beginning. It was gained by the contemplation of an idealized experiment, a body moving forever with no friction nor any other external forces actung. From this example and later from many others, we recognized the importance of the idealized experiment created by thought. Here again, idealized experiments will be discussed. Although these may sound very fantastic they will, nevertheless, help us to understand as much about relativity as is possible by our simple methods.

We had previously the idealized experiments with a uniformly moving room. Here, for a change, we shall have a falling elevator.

Imagine a great elevator at the top of a skyscraper much higher than any real one. Suddenly the cable supporting the elevator breaks, and the elevatwe falls freely toward the ground. Observers in the elcvator are performing experiments during the fall. In describing them, we need not bother about air resistance or fristion, for we may disregard their existence under our idealized conditiens. One of the observers takes a handkerchief and a watch from his pocket and drops them. What happens to these two bodies? For the out-
side observer, who is looking through the window of the elevator, both handkerchief and watch fall toward the ground in exactly the same way, with the same acceleration. We remember that the acceleration of a falling body is quite independent of its mass and that it was this fact which revealed the equality of gravitational and inertial mass (p. 37). We also remember that the equality of the two masses, gravitational and inertial, was quite accidental from the point of riew of classical mechanics and played no role in its structure. Here, however, this equality reflected in the equal acceleration of all falling bodies is essential and forms the basis of our whole argument.
Let us return to our falling handkerchief and watch; for the ourside observer they are both falling with the same acceleration. But so is the elevator, with its walls, ceiling, and floor. Therefore: th. distance between the two bodies and the floor will not change. For the inside observer the two bodies remain exactly where they were when he let them go. The inside observer may ignore the gravitational field, since its source lies outside his CS. He finds that no forces inside the elevator act upon the two bodies. and so they are at rest, just as if they were in an inertial CS. Strange things happen in the elevator! If the observer pushes a body in any direction, up or down for instance. ic always moves uniformly so long as it does not collide with the ceiling or the floor of the elevator. Briefly speaking, the laws of classical mechanics are valid for the observer inside the elevator. All bodies behave in the way expected by the law of inertia. Our new CS rigidly connected with the freely falling elevator differs from the inertial CS in only one respect. In an
inertial CS, a moving body on which no forces are acting will move uniformly forever. The inertial CS as represented in classical physics is neither limited in space nor time. The case of the observer in our elevator is, however, different. The inertial character of his CS is limited in space and time. Sooner or later the uniformly moving body will collide with the wall of the elevator, destroying the uniform motion. Sooner or later the whole elevator will collide with the earth destroying the observers and their experiments. The CS is only a "pocket edition" of a real inertial CS.

This local character of the CS is quite essential. If our imaginary elevator were to reach from the North Pole to the Equator, with the handkerchief placed over the North Pole and the watch over the Equator, then, for the outside observer, the two bodies would not have the same - • they would not be at rest relative to eacn other. Our whole argument would fail! The dimensions of the elevator must be limited so that the equality of acceleration of all bodies relative to the outside observer may be assumed.

With this restriction, the CS takes on an inertial character for the inside observer. We can at least indicate a CS in which all the physical laws are valid, even though it is limited in time and space. If we imagine another CS, another elevator moving uniformly, relative to the one falling freely, then both these CS will be locally inertial. All laws are exactly the same in both. The transition from one to the other is given by the Lorentz transformauın.

Let us see in what way both the observers, outside and inside, describe what takes place in the elevator.

The outside observer notices the motion of the ele-
vator and of all bodies in the elevator, and finds them in agreement with Newton's gravitational law. For him, the motion is not uniform, but accelerated, because of the action of the gravitational field of the earth.

However, a generation of physicists born and brought up in the elevator would reason quite differently. They would believe themselves in possession of an inertial system and would refer all laws of nature to their elevator, stating with justification that the laws take on a specially simple form in their CS. It would be natural for them to assume their elevator at rest and their CS the inertial one.

It is impossible to settle the differences between the outside and the inside observers. Each of them could claim the right to refer all events to his CS. Both descriptions of events could be made equally consistent.

We see from this example that a consistent description of physical phenomena in two different CS is possible, even if they are not moving uniformly, relative to each other. But for such a description we must take into account gravitation, building so to speak, the "bridge" which effects a transition from one CS to the other. The gravitational field exists for the outside observer; it does not for the inside observer. Accelerated motion of the elevator in the gravitational field exists for the outside observer, rest and absence of the gravitational field for the inside observer., But the "bridge," the gravitational field, making the description in both CS possible, rests on one very important pillar: the equivalence of gravitational and inertial mass. Without this clew, unnoticed in classical mechanics, our present argument : uld fail completely.

Now for a somewhat different idealized experiment. There is, let us assume, an inertial CS, in which the law of inertia is valid. We have already described what happens in an elevator resting in such an inertial CS. But we now change our picture. Someone outside has fastened a rope to the elevator and is pulling, with a constant force, in the direction indicated in our drawing. It is immaterial how this is done. Since the laws of mechanics are valid in this CS, the whole elevator moves with a constant acceleration in the direction of the motion. Again we shall listen to the explanation of

phenomena going on in the elevator and given by both the outside and inside observers.
The outside observer: My CS is an inertial one. The elevator moves with constant acceleration, because a constant force is acting. The observers inside are in absolute motion, for them the laws of mechanics are invalid. They do not find that bodies, on which no forces are acting, are at rest. If a body is left free, it soon collides with the floor f t the elevator, since the floor moves upward toward the body. This happens
exactly in the same way for a watch and for a handkerchief. It seems very strange to me that the observer inside the elevator must always be on the "floor" because as soon as he jumps, the floor will reach him again.
The inside observer: I do not see any reason for believing that my elevator is in absolute motion. I agree that my CS, rigidly connected with my elevator, is not really inertial, but I do not believe that it has anything to do with absolute motion. My watch, my handkerchief, and all bodies arc falling because the whoie elevator is in a gravitational field. I notice exactly the same kinds of motion as the man on the earth. He explains them very simply by the action of a gravitational field. The same holds good for me.

These two descriptions, one by the outside, the other by the inside, observer, are quite consistent, and there is no possibility of deciding which of them is right. We may assume either one of them for the description of phenomena in the elevator: either nonuniform motion and absence of a gravitational field with the outside observer, or rest and the presence of a gravitational field with the inside observer.
The outside observer may assume that the elevator is in "absolute" nonuniform motion. But a motion which is wiped out by the assumption of an acting gravitational field cannut be regarded as absolute motion.
There is, possibly, a way out of the ambiguity of two such different descriptions, and a decision in favor of one against the other could perhaps be made. Imagine that a light ray enters the elevator horizontally through a side window and reaches the opposite wall after a
very short time. Again let us see how the path of the light would be predicted by the two observers.

The outside observer, believing in accelerated motion of the elevator, would argue: The light ray enters the window and moves horizontally, along a straight line and with a constant velocity, toward the opposite wall. But the elevator moves upward and during the time in which the light travels toward the wall, the elevator changes its position. Therefore, the ray will meet a point not exactly opposite its point of entrance, but a little below. The difference will be very slight, but it exists nevertheless, and the light ray travels, relative to the elevator, not along a straight, but along a

slightly curved line. The difference is dve to the distance covered by the elevator during the time the ray is crossing the interior.

The inside observer, who believes in the gravitational field acting on all objects in his elevator, would say: there is no accelerated motion of the elevator, but only the action of the gravitational field. A beam of light is weightless and, therefore, will not be affected by the gravitational field. If sent in a horizontal direction, it will meet the wall at a point exactly opposite to that at which it entered.

It seemıs from this discussion that there is a possibility of deciding between these two opposite points of view as the phenomenon would be different for the two observers. If there is nothing illogical in either of the explanations just quoted, then our whole previous argument is destroyed, and we cannot describe all phenomena in two consistent ways, with and without a gravitational field.
But there is, fortunately, a grave fault in the reasoning of the inside observer, which saves our previous conclusion. He said: "A beam of light is weightless and, therefore, it will not be affected by the gravitational field." This cannot be right! A bearn of light carries energy and energy has mass. But every inertial mass is attracted by the gravitational field as inertial and gravitational masses are equivalent. A beam of light will bend in a gravitational field exactly as a body would if thrown horizontally with a velocity equal to that of light. If the inside observer had reasoned correctly and had taken into account the bending of light rays in a gravitational field, then his results would have been exactly the sarne as those of an outside observer.
The gravitational field of the earth is, of course, too weak for the bending of light rays in it to be proved directly, by experiment. But the famous experiments performed during the solar eclipses show, conclusively though indirectly, the influence of a gravitational field on the path of a light ray.
It follows from these examples that there is a wellfounded hope of formulating a relativistic physics. But for this we nust first tackle the problem of gravitation.
We saw from the example of the elevator the consistency of the two descriptions. Nonuniform motion
may, or may not, be assumed. We can eliminate "absolute" motion from our examples by a gravitational field, But then there is nothing absolute in the nonuniform motion. The gravitational field is able to wipe it out completely.
The ghosts of absolute motion and inertial CS can be expelled from physics and a new relativistic physics built. Our idealized experiments show how the problem of the general relativity theory is closely connected with that of gravitation and why the equivalence of gravitational and inertial mass is so essential for this connection. It is clear that the solution of the gravitational problem in the general theory of relativity must differ from the Newtonian one. The laws of gravitation must, just as all laws of nature, be formulated for all possible CS, whereas the laws of classical mechanics, as formulated by Newton, are valid only in inertial CS.

# Einstein and some Civilized Discontents 

Martin Klein

The French novelist Stendhal began his most brilliant novel with this sentence: "On May 15, 1796, General Bonaparte made his entrance into Milan at the head of that youthful army which had just crossed the bridge of Lodi, and taught the world that after so many centuries Caesar and Alexander had a successor." In its military context, the quotation is irrelevant here, but it can be paraphrased a bit: almost exactly a century later Milan saw the arrival of another young foreigner who would soon teach the world that after so many centuries rialileo and Newton had a successor. It would, however, have taken superhuman insight to recognize the future intellectual conqueror in the boy of fifteen who had just crossed the $A^{\prime} p s$ from Munich. For this boy. Albert Einstein, whose name was to become a symbol for profound scientific insight, had left Munich as what we would now call a high.school dropout.

He had been a slow child; he learned to speak at a much later age than the average, and he had shown no special ability in elementary school -except perhaps a talent for day-dreaming. The education offered at his secondary school in Munich, one of the highly praised classical gymnasia, did not appeal to him. The rigid, mechanical methods of the school appealed to him even less. He had already begun to develop his own intel. lectual pursuits, but the stimulus for them had not come from school. The mystery hidden in the compass given to him when he was five, the clarity and beauty of Enclidean geometry, discovered by devouring an old geometry text at the age of twelve-it was these things that set him on his own road of independent study and thought. The drill at school merely served to keep him from his own interests. When his father, a small and unsuccessful manufacturer, moved his busi.
ness and his family from Munich to Milan, Albert Einstein was left behind to finish his schooling and acquire the diploma he would need to insure his future. After some months, however, Einstein was fed up with school, and resolved to ieave. His leaving was assisted by the way in which his teachers reacted to his attitude toward school. "You will never amount to anything, Einstein," cne of them said, and another actually suggested that Einstein leave school because his very presence in the classroom destroyed the respect of the students. This suggestion was gratefully accepted by Einstein, since it fit so well with. his own decisions, and he set off to join his family in Milan. The next months were spent gloriously loafing, and hiking around northern Italy, enjoying the many contrasts with his homeland. With no diploma, and no prospects, he seemed a very model dropout.

It is sobering to think that $n$ n teacher had sensed his potentialities. Perhaps it suggests why I have chosen this subject in talking to this gathering of physics teachers seriously devoted to improving education in physics, and devoted in particular to a program aimed at the gifted student of our science-at his early detection and proper treatment. For what I really want to do is to highlight some aspects of Einstein's career and thought that stand in sharp contrast to a number of our accepted ideas on education and on the scientific career. The first matter we must reckon with is Einstein's own education and the way it affected him; but let me carry the story a little further before raising some questions.
Einstein had dropped out of school, tut he had not lost his love for science Since his family's resources, or lack of them, would make it neces. sary for him to become self-supporting, he decided to go on with his scientific studies in an official way. He, therefore, presented himself for admission at the renowned Swiss Federal Institute of Technology in Zürich. Since he had no highschool diploma he was given an entrance exam-ination-and he failed. He had to attend a Swiss high school for a year in order to make up his
deficiencies in almost evelything eacept mathematus and physes, the subjects of has own pivate study. And then, when he was finally admitted to the Polytechnic Institute, did he settle down and assume what we would considen to be has rightful place at the head of the class? Not at all. Despite the fact that the coures were now almost all in mathematus and physics. Einstein cut most of the lectures. He did enjoy working in the laborators, but he spent most of his time in his room studyng the origmal works of the masten of ninetenth-century physics. and pondering what they set forth
The lectures on advanced mathematics d not hold him, because in those days he saw no need or we for higher mathematics as a tool for grasp. ing the structure of nature. Besides, mathematios appeated to be split into so many branches, each of which could absorb all one's time and energy, that he feared he could never have the insight to decide on one of them, the fundamental one He would then be in the position of Buridan's ass, who died of hunger because he could not decide wheh bundle of hav he should eat.
Physics presented no such problems to Finstein, even then $A_{s}$ he wote many years later: "True enough, physics was also diveded into separate field, each of whith could devoun a shont working life whtout having sati,fied the hunger for deeper knowledge . Bur in phestos 1 soon learned to scent out the pathe that led to the depths, and to daregard eversthang ehe, all the many things that cluter up the mind, and divett it from the essental The huth in thas was, of couse, the fact that one had to cram all this stuff into one's mind for the exammation, whether one liked it or not."
That was indeed the rub finstein had reconciled himself to being only an average scholar at the Polytechnic. He knew that he ded not have and could not, or perhaps would not, acquire the traits of the outsandug student: the easy facility in comprehension, the willingness to concentrate onces energies on all the required subjects, and the orderliness to take good notes whed work them owe propenly. Fortunately, howerer, the Swiss system required only wo examinations Even more fortunately Eínstein had a clove friend, Macel Goossmann, who possessed just the qual itie, that Emstem lached, and who generousl) shared his excellent systematic notes with his nonconforming comrade So Emstein was able to follow his own line of sudy, and still succeed in the exams by domg some appropriate cramming from Grossmann's notes. This success left more

than a bad taste in his mouti. As he put it, "It had such a detening effect upon me that, after I had parsed the final examination, I found the consideration of any scientific problems dis. tasteful we me an entiae jeal" And he went on to say. "It is little shont of a miracle that modern methots of instruction have not alieady completely strangled the holy cuiosity of inquiry, because what this delidate litule plant needs most, apart from initial stimulation, is ficedom; without that it is surely dentoved il believe that one could even deprive a healthy beast of prey of th sotamenes, if one could force a with a whip to eat continuously whether it wele hungry or not
This is strong language. Should we take it personally: Could :t be meant for us, for the teachers repponsible for an educational system of ahuevement texts, peliminary college boards, ol. lege boards, national scholarhips, grade point averages, graduate tecord exams, PhD qualitying
exams-a system that starts earlier and eatier and ends later and later in our students' careers? Could this system be dulling the appetites of our young mellectial tigers' is it possible that our students need more time to daydream rather than more hours in the school day: That the relentess pressure of our educational sy;em makes everythang only a step toward something else and nothing an end in itself and an object of pleasure and contemplation?

For almost wo years after his graduation from the Polvechmic 111900 Emstein semed to be headed for no more success than his earleer history as a dropout mught have suggested. He applied for an assistantship, bt it went to someone else. Daring this penod he managed to subsist on the odd jobs of the learned world. he substituted for a Swiss high.school teaches who wis dong his two months of malitary service. he heiped the professor of astronomy with some calculations, he tutored at d bos shool Finally. in the spring of 1902, Einstein', good friend Dancel Grossmann. "the is reproachable student". come to bis rescue Grossmann's father recommended Emstem to the director of the Swiss Patent Offec at Berne, and after a searchang exammation be was appointed to a posituon ds patent examiner lie held this position for over seven years and often refersed to it in later years as "". hind of salation" It freed him from financial worries: he found the work tather intetesting. and sometimes it served as a stimulus to his scientific imagination And besides. it occupied only etght hour of the day, so that thete was plent? of time left free for pondering the riddles of the unverse
In his spare time during those seven vears at Berne, the boung patent exammet wrought a series of scientifir miratles: no weakes word is adequate He did nothmg less than to lay out the main lines along which twentieth-century theoretical physics has developed. A lery brief list will have to suffice. He began by working ont the subject of statstical mechanics quite independently and without knowing of the work of J. Willard Gibbs He abo took this subject seriously .a a way that neither Gibls not Boltmann had ever done, smoe he used it to gate the theo. retical basis for a final proof of the atomic nature of mattet lis teflections on the poblems of the Maxwell-I.orent electrodynmmics led him to create the spectal theory of ielataits. Before he left Berne he had formmated the principle of equivalence and was struggling wat the prob.
lems of gravitation which he later solved with the feneral throry of relativit. And, as if these were not enough, Finstein introduced another new ided into phwics, one that even he described as "very revolutionas,", the idea that light consists of particles of energ. Following a line of reasoning related to but quite distinct from Planck's, Finstein not only meroduced the light quantum bypothesis, but proceeded almost at conce to explore its implications for phenomena as diverse as photochemistiy and the temperature dependence of the specifir heat of solids

What is more, Einstein did all this completely on his own, with no academic comections whatsocver, and with essentially no contact with the elders of his professon Years later he remorked to leopold Infeld that until he was alnoost thirty he had never seen a real theoretical phasicist To which. of course, we should add the phrase (as Infeld aimost did aloud, and as Finstein would never have done) "except in the mirror".

I suppose that some of us might be tempted to wondet what Finstein might have done during those sesen years, if he had been able to work "under really favorable conditions", full time. dt a majon minersity, instead of being restaited to spare tume ativity while eaning his lising as a minor cival servant. We should resist the temptanon onn speatatoms would be not onl fantes. but completely unfounded. For not only did Einstein not regact his lack of an academic post in these years, he actually comsdened it a real adkantage, "For an academic career puts a poung man into a kind of embarrassing position," be wrote shortly before his death. "by reguinang him to produce scientific publications in impressive quantity-a seduction into superficiality which only stoong chatacters ain able to withstand. Most practical occupations, however, are of such a nature that a man of normal ability is able to accomplish what is experted of him. His day-o. day existence does not depend on any special illuminations. If he has deeper seientifie interests he maty plange into his facome problems in addition to doing his required work. He need not be opplessed bs the feat that his efforts mat lead to no results. I owed it to Marcel Gossmamn that I was $m$ uch a fortunate position."

These were no casual acmarks forty lears eatier 1 mesem had whed Mas Born not to wom about placing a gifted student in an atodemm positon. I.ee him be a cobbler or a lockmith: if he really has a love fon science in his blood and it he's really wosth anythang, he wall make has own wis. (Of course, Emsem then gase what

help he could in piacing the roung man.) Einstein was exen a litule seluctant about accepting a reseath pootewoship at bealm, panty berame Prussion rigidity and academic bomgeos life were not to hiv Bohembun tave. But he wa aloo reluctant because he knew very well that such a reseath poofenor was expected to be a wot of prize hen, and he did not want (w) gutrantee that he would has any mete golden eggs.

It wall not hase evaper pon notice that Einsten's vew on levearh and the mature of a scientific areer datfen hatply from those which are standad 11 the wentific conmmmats. No eloubt wime of thi dofference in ditude ieflests only liavtem, amquels solatary mature. It is hard to imagine ansone elve veriouly suggesting as he dicl. that a pontom $x$ highthome heeper might be suitable for a wentint. Most xientiva feel the need to tevt therr adean on theiv peren, and often to fom these ideas in the gave and take of dis. Cowom. A among then most urgent needs One may sull quevion the necewits of as mans ancet ings as we lad amounced m Phoses rodar. and one mas quevion even more imistemly the necesits of reponting on each and publivhing its proreeding, a if it :reme the firnt Solvay Congress itself

More setious is the atotude that every young man of wientifu dhat! (an daim the right to a position as prize hen "Dong revearch" has become the hallowed actovty in the atademue work, and, as Jacques Barain has pat it. "'o suggevt that pratue, or teathing, or reflection might be phefered is blaphemy." I do not need to re emphasice Enstem's remak on the publinh. or-perivh policy that corrupts one aspect of deademic life. I would, iowever, like to remak
parenthecicall that 1 am ahays astomivhed when :ollege admmastators and depontment heads claim that it is tenibl! diffeth, vituall imposwhe to judge the quaht! of a aman teathag. but neves doubt ther abilits to exaluate the revald of has reveath This s atomming because any honest undetgraduate can give a rather sanny and usaall acorate appasial of the teathing he is subjected to, but judging the guality of a wientife paper generally motese in difinuls with the ouginalley of the woth tepoted. Finnein's hypothen of ligin quante, fon example. was ronsideted as wally off the matk, a at beat a pardonable evew is m otherwne wond thinkes, even by Plamk a decade after 11 was intooluced.

The wid in which phwio is thught is decply influenced by our views of how and whiphsics ss done. Fmatem. who wat thepucal about the pofessionalization of revearch, was answowang in han pensunt of fundamental undervanding. he was a matural philosopher in the follest veme of thit old tem, and he had no great teypert for thone who weated suence as a game to be plaved for oncs petwnal wataction. or thase who whed problems to demomerate and maintain their melle tu.ll vatumat li phovio is viewed in finstein' way, it follows that it should be tatght a d dama of selea and not as abotery of techmeques. It follow too that these vhould be an emphas on the evolution of ide:a. on the history of out attempts to undentand the phoucal world. w that our sutent degune vome perypetive and realize that. in Einvein's words, "the perent powton of wence an have no lasting significance." Do we keep this hberal view of our wence. on is it iost in what we call nexessary beparatoon for graduate woh and revearch?

One lat theme that annot be ignored when we peak of Finvein is that of the scientivt as ctuen Linteinc actue and counageous sole in public affairs is walel hown, and it abobbed a subsantal fraction of hav eflont for forts :cars. He vepped onto the public stuge early and in charactenistic stale. In Ocoble litit. wo months after the outisak of the Fint World War, a document was wued in Berlin beating the grandiose utle, Manitesto to the Civilized Wonld: it caried the sgnatued of almont a humdred of Gemanys most prominen: ©ientists, artasts, men of letters, cleigymen, ell 1 ins mamevto prochimed its signers foll support of Germanys war effort. denoune ed the opponents of the tatherland, and defiantly asserted that German mulitarimand German culture formed an mseparable unity.

Not all (erman mellectuals appord the chat smand docuncmi, but among the sot few who wete willang to bign a harply woded amwer calling for an end to war and in motmatomal oggamatom, wa Albert bmecin the hghly unpropular suad that he wook m 1991 spessed a deep'v ielt consution, one on which he arted thougnour ha here regadlew of the comequences to humelf bung the succeching detades Fintem desoted a gent deal of hen energy to the camen in whith he belaeved. Iendang ha nume to many ong.untanons whath be felt could turther these cause Contrals to the wew held in some artes. howeser, b:memem chefull comidered each signat ture that he insorbed on a petition, eath politual we that he made of the name that had become renowned for sombific teamens, and ofte tefaced han sup;ont to orgamations that attempted wo solut it it.
'ith public vatements became even more fiequent and more outyooken in the jeats after the Second Wionld War. ." he pat all his weight behind the effort to athieve a world government and to abolith war once and for all rinstem was among those who have been orying to impress pon the wonld the ser! real helihood that anoher war would destroy crilita'on and perhaps humamty as well. He was not overly optimistic

about has eflom, but thes had to be made He ANo telt that he had to yeat ont. loudls .mad

 as phatwed corlict b Gemdhe fond late b Vath Itathey hong) is he wote an an open letter, "Eaes medle that who is c.lled before one
 be must be pepaned for ful and comomer runn.
 in the metert of the cultural willate of his coumus If wh a progiom were not .ulopted then. wote lememen. "the mellectus) of the counts deserse nothing better than the shats which is intended for them."
 poliucal and social ques:am as a man what conadered hamelf omsude the wabhhment He had a very strong vence of espomability to ha conwience. but he dad not feel obliged wherep all the rentutions that eotety eaperte of ate. sponsible yookesman" the appowth in newter possible nor approprinte for todas's leachng xi-
 statemen-as adisers to the W.C. or the Depout. ment of befence, on mation conportioms or enen the Prevident. Suht men ate in no powtom to adopt lanstein's ontical vance wen if the wanted to At thas time. whon acose requites and receives such hagewale wif eott it secm that we have all gren more hostages of tortue than we maty tealice

One of Emstein's last public statemems was made in answer to a reguent that he comment on the situation oi vientase in Ameriat He wrote: "Instew of using to .nalye the problem I shonld like to cxpress my feeling in a short remark. If 1 were a soung man agan and fad oo dectede how to make a hing. I womld not try we beome a scientist on stholar on teather I would rather choose (') be a plumber or a peddler. in the hope of hinding that modent degree of independence still available mader present circumstances."

We may wonder how inteally, he meant this to be taken, but we amot help fechng the force of the affront to our entite instetutionalized he of the mellest

As we prade ourselies on the suctess of phases and physicists in today's world, let us not forget that it was just that suctess and the way in which it was athieved that was repudiated by Einstein. And let us not forget to ask why it may tell us something worth knowing about ourseives and out society.


Devil's Staircase, A Computer Drawing Lloyd Sumner

# The Teacher and the Bohr Theory of the Atom 

Charles Percy Snow

Then one day, just before we broke up for Christmas, Luard came into the class-room almost brightly.
"We're not going into the laboratory this morning," he said. "I'm going to talk to you, my friends." He used to say "my friends" whenever he was lashirg us with his tongue, but now it sounded half in carnest. "Forget everything you know, will you? That is, if you know anything at all." He sat on the desk swinging his legs.
"Now, what do you think all the stuff in the world is made of? Every bit of us, you and me, the chairs in this room, the air, everything. No one knows? Well, perhaps that's not surprising, even for nincompoops like you. Because no one did know a year or two ago. But now we're beginning to think we do. That's what I want to tell you. You won't understand, of course. But it'll amuse me to tel! you, and it won't hurt you. I suppose-and anyway I'm going to."

Someone dropped a ruler just then, and afterwards the rcom was very quiet. Luard took no notice and went on: "Well, if you took a picce of lead, and halved it, and halved the half, and went on like that, where do you think you'd come to in the end? Do you think it would be lead for ever? Do you think you could go down right to the infinitely small and still have tiny pieces of Jead? It doesn't matter what you think. My friends, you couldn't. If you went on long enough, you'd come to an atom of lead, an atom, do you hear, an atom, and if you split that up, you wouldn't have lead any more. What do you think you would have? The answer to that is one of the rddest things you'll ever hear in your life. If you split up an atom of lead, you'd get-pieces of positive and negative electricity. Just that. Just positive and regative electricity. That's all matter is. That's all you are. Just positive and negative electricity-and, of course, an immortal soul." At the time I was too busy attending to his story to observe anything else; but in the picture I have formed later of Luard, I give him here the twitch of a smile. "And whether you started with lead or anything else it
wouldn't matter. That's all you'd come to in the end. Positive and negative electricity. How do things differ then? Well, the atoms are all positive and negative electricity and they're all made on the same pattern, but they vary among themselves, do you see? Every atom has a bit of positive electricity in the middle of it-the nucleus, they call itand every atom has bits of negative electricity going round the nucleus-like pl?nets round the sun. But the nucleus is bigger in some atoms than others, bigger in lead than it is in carbon, and there are more bits of negative electricity in sume atoms than others. It's as though you had different solar systems, made from the same sort of materials, some with bigger suns than others, some with a lot more planets. That's all the difference. That's where a diamond's different from a bit of lead. That's at the bottom of the whole of this world of ours." He stopped and cleaned his pince-nez, and talked as he swung them:
"There you are, that's the way things are going. Two people have found out about the atoms: one's an Englishman, Rutherford, and the other's a Dane called Bohr. And I tell you, my friends, they're great men. Greater even than Mr. Miles"-I flushed. I had conie top of the form and this was his way of congratulating me-"incredible as that may seem. Great men, my friends, and perhaps, when you're older, by the side of them your painted heroes, your Cæsars and Napoleons, will seem like cocks crowing on a dungheap."
I went home and read everything I could discover about atoms. Popular exposition was comparatively slow at that time, however, and Rutherford's nucleus, let alone Bohr's atom, which could only have been published a few months before Luard's lesson, had not yet got into my Encyclopædia. I learned something of electrons and got some idea of size; I was fascinated by the tininess of the electron and the immensity of the great stars: I became caught up in lightyears, made time-tables of a journey to the nearest star (in the

Encyclopædia there was an enthralling picture of an express train going off into space at the speed of light, taking years to get to the stars). Scale began to impress me, the infinitesimal electronic distances and the vastness of Aldebaran began to dance round in my head; and the time of an electronic journey round the nucleus compared itself with the time it takes for light to travel across the Milky Way. Distance and time, the infinitely great and the infinitely small, electron and star, went reeling round my mind.
It must have been soon after this that I let myself seep in the fantasies that come to many imaginative children nowadays. Why should not the electron contain worlds smaller than itself, carrying perhaps inconceivably minute replicas of ourselves? 'They wouldn't know they're small. They wouldn't know of us,' I thought, and felt serious and profound. And why should not our world be just a part of an electron in some cosmic atom, itself a part of some gargantuan world? The speculations gave me a pleasant sense of philosophic agoraphobia until I was about sixteen and then I had had enough of them.
Luard, who had set me alight by half an hour's talk, did not repeat himself. Chemistry lessons relapsed once more into exercises meaningless to me, definitions of acids and base which I learncd resentfully, and, as we got further up the school, descriptions of the properties of gases, which always began "colourless, transparent, non-poisonous." Luard, who had once burst into enthusiasm, droned out the definitions or left us to a text-book while he sat by himself at the end of the laboratory. Once or twice there would be a moment of fire; he told us about phlogiston-"that should be a lesson to you, my friends, to remember that you can always fall back on tradition if only you're dishonest enough'" and Faraday-"there never will be a better scientist than he was; and Davy tried to keep him out of the Royal Society because he had been a laboratory assistant. Davy was the type of all the jumped-up second-raters of all time."

# The New Landscape of Science 

Banesh Hoffmann

Ler us now gather the loose threads of our thoughts and see what pattern they form when knit together.
We seem to glimpse an eerie shadow world lying bencath our world of space and time; a weird and cryptic world which somehow rules us. Its laws seem mathematically precise, and its events appear to unfold with strict causality.

To pry into the secrets of this world :/e make experiments. But experiments are a clumsy instrument, afflicted with a fatal indeterminacy which destroys causality. And because our mental images are formed thus clumsily, we may not hope to fashion mental pictures in space and time of what transpires within this deeper world. Abstract mathematics alone may try to paint its likeness.

With indeterminacy corrupting experiment and dissolving causality, all seems lost. We must wonder how there can be a rational science. We must wonder how there can be anything at all but chaos. But though the detailed workings of the indeterminacy lie hidden from us, we find therein an astounding uniformity. Despite the inescapable indeterminacy of experiment, we find a definite, authentic residue of exactitude
and determinacy. Compared with the detailed determinacy claimed by classical science, it is a meager residue indeed. But it is precious exactitude none the less, on which to build a science of natural law.
The very nature of the exactitude seems a paradox, for it is an exactitude of probabilities; an exactitude, indeed, of wavelike, interfering probabilities. But probabiliies are potent things-if only they are applicd to large numbers. Let us see what strong reliance may be placed upon them.
When we toss a coin, the result may not be predicted, for it is a matter of chance. Yet it is not entrecly undetermined. We know it must be one of only two possibilitics. And, more important even than that, if we toss ten thousand coins we know we may safely predict that about half will come down heads. Of course we might be wrong once in a very long while. Of course we are taking a small risk in making such a prediction. But let us face the issue squarely, for we really place far more confidence in the certainty of probabilities than we sometimes like to admit to ourselves when thinking of them abstractly. If someone offered to pay two dollars every time a coin turned up heads provided we paid one dollar for every tails, would we really hesitate to accept his offer? If we did hesitate, it would not be because we mistrusted the probabilities. On the contrary, it would be because we trusted them so well we smelled fraud in an offer too attractive to be honest. Roulette casinos rely on probabilities for their gambling profits, trusting to chance that, in the long run, zero or coouble zero will come up as frequently as any other number and thus guarantee them a steady percentage of the total transactions. Now and again the luck runs against them and they go broke for the evening. But that is because chance is still capricious
when only a few hundred spins are made. Insurance companies also rely on probabilities, but deal with far larger numbers. One does not hear of their ever going broke. They make a handsome living out of chance, for when precise probabilities can be found, chance, in the long run, becomes practical certainty. Even classical science built an claborate and brilliantly successful theory of gases upon the secming quicksands of probability.
In the new world of the atom we find both precise probabilities and cnormous numbers, probabilities that follow exact mathematical laws, and vast, incredible numbers compared with which the multitude of persons cerrying insurance is as nothing. Scientists have determined the weight of a single clectron. Would a mullion elcetrons weigh as much as a feather, do you think? A million is not large cnough. Nor cren a billion. Well, surcly a million billon then. No. Not even a billion billion electrons would outweigh the feather. Nor yet a million billion billion. Not till we have a billion bilhon billion can we talk of their weight in such cveryclay tcrins. Quantum mechanics having discovered precise and wonderful laws governing the probabilities, it is with numbers such as these that science overcomes its handicap of basic indeterminacy. It is by this means that science boldly predicts. Though now humbly confessing itself powcrlcss to foretell the chact ielavior of individual elcetrons, or photons, or otlicr fumdamental entities, it yse can tell with cnomous confidence how such great multitudes of them must behave precisely.

But for all this mass precision, we are only hmman if, on first licaring of the breakdown of determinacy in fundamental science, we look back longingly to the good old classical days, when waves were waves and particles particles, when the work-
ings of nature could be readily visualized, and the future was predictalle in every individual detail, at least in theory. But the good old days were not such happy days as nostalgic, rosctinted retrospect would make them seem. Too many contradictions flourished unresolved. Too many well-attested facts played havoc with their pretensions. Those were but days of seientific childhood. There is no going back to them as they were.
Nor may we stop with the world we have just described, if we are to round out our story faithfully. To stifle nostalgia, we pictured a world of causal law lying bencath our world of space and time. While important scientists seem to feel that such a world should exist, many others, pointing out that it is not demonstrable, regard it therefore as a bit of homely mysticism added more for the sake of comfort than of cold logic.
It is difficult to decide where seience ends and mysticism begins. As soon as we begin to make even the most elementary theories we are open to the charge of indulging in metaphysies. Yet theorics, howevcr provisional, are the very lifeblood of scientific progress. We simply cannot escape metaphysics, though we can perhaps overindulge, as well as have too little. Nor is it feasible always to distinguish good metaphysics from bad, for the "bad" may lead to progress where the "good" would tend to stiffe it. When Columbus made his historic royage he believed he was on his westward way to Japan. Even when he reaclicd land he thought it was part of Asia; nor did he live ro lcarn otherwisc. Would Columbus have embarked upon his hazardous journey had he known what was the true westward distance of Japan? Quantum mechanics itself came partly from the quecr hunches of such men as Maxwell and Bohr and de Broglic. In talking of the meaning of quantum mechanics, plyysicists indulge in more or less mysticism accord-
ing to their individual tastes. Just as different artists instinctively paint different likenesses of the same model, so do scientists allow their different personahities to color their meterpretations of quantum mechanics. Our story would not be complete did we not tell of the austere conception of quantum mechanics hinted at above, and also in our parable of the coin and the principle of perversity, for it is a view held by many physicists.
These physicists are satisfied with the sign-language rules, the extraordinary precision of the probabilities, and the strange, wavelike laws which they obey. They realize the impossibility of following the detailed workings of an indeterminacy through which such bountiful precision and law so unaccountably seep. They recall such incidents as the vain attempts to build models of the ether, and their own former naive beliefs regarding momentum and position, now so rudely shattered. And, recalling them, they are properly cautious. They point to such things as the sign-language rules, or the probabilities and the exquisite mathematical laws in multidimensional fictional space which govern them and which have so eminently proved themselves in the acid test of experiment. And they say that these are all we may hope and reasonably expect to know; that science, which deals with experiments, should not probe too deeply beneath those experiments for such things as cannot be demonstrated even in theory.
The great mathematician John von Neumann, who accomplished the Herculean labor of cleaning up the mathematical foundations of the quantum theory, has even proved mathematically that the quantum theory is a complete system in itself, needing no secret aid from a deeper, hidden world, and offering no evidence whatsoever that such a world exists. Let
us then be content to accept the world as it presenis itself to us through our experiments, however strange it may seem. This and this alone is the image of the world of science. After castigating the classical theorists for their unwarranted assumptions, however seemingly innocent, would it not be foolish and foolhacicy to invent that hidden world of exact causality of which we once thought so fondly, a world which by its very nature must lic beyond the reach of our experiments? Or, indeed, to invent anything else which cannot be demonstrated, such as the detailed occurrences under the Heisenberg microscope and all other pieces of comforting imagery wherein we picture a wavicle as an old-fashioned particle preliminary to proving it not onc?
All that talk of exactitude somehow seeping through the indeterminacy was only so much talk. We must cleanse our minds of previous pictorial notions and start afresh, taking the laws of quantum mechanics themselves as the basis and the complete outline of modern plysics, the full delineation of the quantum world beyond which the:e is nothing that may properly belong to physical science. As for the idea of strict causality, not only does science, after all these years, suddenly find it an unnecessary concept, it even demonstrates that according to the quantum theory strict causality is fundamentally and intrinsically undemonstrable. Therefore, strict causality is no longer a legitimate scientific concept, and must be cast out from the official domain of present-day science. As Dirac has written, "The only object of theoretical physics is to calculate results that can be compared with experiment, and it is quite unnecessary that any satisfying description of the whole course of the phenomena should be given." The italics here are his. One cannot escape the feeling that it might have
been more appropriate to italicize the second part of the statement rather than the first!
Hcre, then, is a more restricted pattern which, paradoxically, is at once a more cautious and a bolder view of the world of quantun physics; cautious in not venturing beyond what is well cstablished, and bold in accepting and being well content with the result. Becausc it docs not indulge too frecly in speculation it is a proper view of present-day quantum physics, and it seems to be the sort of view held by the greatest number. Yet, as we said, there are many shades of opinion, and it is sometimes difficult to decide what are the precise views of particular individuals.

Some mon feel that all this is a transitional stage through which science will ultimately pass to better things-and they hope soon. Others, accepting it with a certain discomfort, have tried to temper its awkwardness by such devices as the introduction of new types of logic. Some have suggested that the observer creates the result of his observation by the act of observation, somewhat as in the parable of the tossed coin. Many nonscientists, but few scientists, have seen in the new ideas the cmbodiment of free will in the inanimate world, and have rejoiced. Some, more cautious, have seen merely a revived possibility of free will in ourselves now that our physical processes are frecd from the shackles of strict causality. One could continue endlessly the list of these speculations, all testifying to the devastating potency of Planck's quantum of action $h$, a quantity so incredibly minute as to seem utterly inconsequential to the uninitiated.

That some prefer to swallow their quantum mechanics plain while others gag unless it be strongly seasoned with imagery and metaphysics is a matter of individual taste behind which
lie certain fundamental facts which may not be disputed; hard, uncompromising, and at present inescapable facts of experiment and bitter experiense, agreed upon by all and directly opposed to the classical way of thinking:
There is simpiy no satisfactory way at all of picturing the fundamiental atomic processes of naturc in terms of space and time and causality.
The result of an experiment on an individual atomic particle genorally cannot be predicted. Only a list of various possible results nay be known beforchand.
Nevertheless, the statistical result of performing the same individual experiment over and over again an enormous number of times may be predicted with virtual certainty.
For example, though we can show there is absolutely no contradiction involved, we cannot visualize how an clectron which is enough if a wave to pass through two holes in a screen and interfere with itself can suddenly become enough of a particle to produce a single scintillation. Neither can we predict where it will scintillate, though we can say it may do so only in certain regions but not in others. Nevertheless when, instead of a single electron, we send through a rich and abundant stream we can predict with detailed precision the intricats interference pattern that will build tip, even to the relative brightness of its vanous parts.

Our inability to predict the individual result, an inability which, despite the evidence, the classical view was unable to tolerate, is not only a fundamental but actually a plausible characteristic of quantum mechanics. So long as quantum mechanics is accepted as wholly valid, so long must we accept this inability as intrinsically unavoidable. Should a way ever ie found to overcome this inability, that event would mark the
end of the reign of quantum mechanics as a fundamental pattern of nature. A new, and deeper, theory would have to be found to replace it, and quantum mechanics would have to be retired, to become a theory emeritus with the revered, if faintly ireverent title "classical."

Now that we are accustomed, a little, to the bizarre new ideas we may at last look briefly into the quantum mechanical significance of something which at first sight seems truval and inconsequential, namely, that electrons are so similar we cannot tell one from another. This is true also of other atomic particles, but for simplicity let us talk about electrons, with the understanding that the discussion is not thereby confined to them alone.

Inagine, then, an clectron on this page and another on the opposite page. Take a good look at them. You cannot tell them apart. Now blink your eyes and take another look at them. They are still there, one on this page and one on that. But how do you know they did not change places just at the moment your cyes were closed? You think it most unlikely? Does it not always rain on just those days when you go out and leave the windows open? Does it not always happen that your shoclace breaks on just those days when you are in a special hurry? Remember these electrons are identical twins and apt to be mischicvous. Surely you know better than to argue that the electron interchange was unlikely. You certainly could not prove it one way or another.

Perhaps you are still unconsinced. Let us put it a little differenitly, then. Suppose the electrons collided and bounced off one another. Then you certainly could not tell which one was which after the collision.

You still think so? You think you could keep your cyes
glucd on them so they could not fool you? But, my dear sir, that is classical. 'That is old-fashoncd. We camot keep a continual watch in the quantum world. The best we can do is kecp up a bombardment of photons. And with cach impact the electrons jump we knew not how. For all we know they could be clanging places all the time. At the moment of impact cspecally the danger of deception is surely enormous. Let us then egree that we can never be sure of the identity of each clectron.

Now suppose we wish to write down quantum equations for the two clectrons. In the present state of cur theories, we are obliged to deal with them first as mdividuals, saving that certain mathematical co-ordinates belong to the first and certain others to the second 'I his is dishonest though. It gocs beyond permissible information, for it allows each electron to preserve. its identity, whercas electrons should belong to the nameless masses. Somelow we must remedy our initial crror. Somelow we must repress the electrons and remove from ther their unwarranted individuality. 'This reduces to a simple question of mathematical symmetries. W'e must so remold our equations that metcrelanging the electrons has no physically detectable effect on the amswers they yeld.

Imposing this noninduiduality is a grave mathematical restriction, strongly influenciag the behavior of the ciectrons. Of the possible ways of imposing it, two are specially sim, le mathematically; and it lappens that just these two are phesically of interest. Onc of them implics a behar ior which is actually observed in the case of photons, and a particles, and other atomic particles. The other method of imposing nonindividuality turns out to mean that the particles will shun one
another; in fact, it gives preciscly the mysterious exclusion principle of Pauli.

This is indeed a remarkable result, and an outstanding triumpl for quantum mechanics. It takes on added significance when we learn that all those atomic particles which do not obey the Pauli principle are found te behave like the photons and a particles. It is about as far as anyune has gone toward an understanding of the deeper signific.nce of the exclusion principle. Yet it remains a confession of failure, for instead of having nonindividuality from the stert we begin with individuality and then deny it. The Pauli principle lies far decper than this. It lies at the very heart of inscrutable Nature. Someday, perhaps, we shall have a more profound theory in which the exclusion principle will find its rightful place. Meanwhile we must be content with our present velled insight.
The mathematical removal of indwiduality warps our equations and causes extraordinary cffects which cannot be properly explaned in pictorial terms. It may be interpreted as bringing into bcing strange forces called exchange forces, but these forces, though already appearing in other connections in quantum mechames, have no counterpart at all in classical physics.

W'c might have suspected some such forecs were involved. It would have beco incredibly nave to have helieved that so stringcut an orchmance aganst overcrowding as the exclusion principle could be imposed without some measure of force, however well disguised.

Is it so sure that these exchange forecs camot be properly explained in pictonal terms? Aftci all, with force is associated encrgy. And with encrgy i, associated frequency according to Planck's basic quantum law. Witl frequency we may asso. cate some sort of oscillation. Pcrlaps, then, if we think not
of the exchange forces themselves but of the oscillations associated with them we may be able to pictere the mecharism through which these forces exist. This is a promising idea. But if it is clarity we seek we shall be greatly disappointed in it,
It is true there is an oscillation involved herc, but what a fantastic oscillation it is: a rhythm; erchange of the clectrons' identities. The electrons do not ${ }_{1}$ ically change places by leaping the intervening space. That would be too simple. Rather, there is a smooth ebb and flow of individuality between them. For example, if we start with clectron A here and electron $B$ on the opposite page; then later on we would here have some such mixture as sixty per cent A and forty per cent B, with forty per cent $A$ and sixty per cent $B$ over there. Latcr still it would be all B here and all A there, the electrons then having definitely exchanged identities. The flow would now reverse, and the strange oscillation continuc indefinitely. It is with such a pulsation of identity that the exchange forces of the exclusion principle are associated. There is another type of exchange which can affect even a single electron, the electron being analogously pictured as oscillatug in this curious, disembodied way between two different positions.
Perhaps it is easier to accept such curious pulsations if we think of the electrons more as waves than as partieles, for then we can imagine the electron waves becoming tangled up with each other. Mathematically this can be readily perceived, but it does not lend itself well to visualization. If we stay with the particle aspect of the electrons we fund it hard to imagine what a 60 per cent-fo per cent muxture of $A$ and $B$ would look like if we observed it. We camot observe it, though. The act of obscruation would so jolt the electrons that we would find cither pure $A$ or else pure B, but never a combination, the percentage, beng just probabilitics of finding ci,her onc. It
is really our parable of the tossed coin all over again. In midair the coin fluctuates rhythmically from pure heads to pure tails through all intermediate rnixtures. When it lands on the table, which is to say when we observe it, there is a jolt which yields only heads or cails.

Though we can at least meet objections, exchange remains an elusive and difficult concept. It is still a strange and awe-inspiring thought that you and I are thus rhythmically exchanging particles with one another, and with the earth and the beasts of the earth, and the sun and the moon and the stars, to the uttermost galaxy.
A striking instance of the power of exchange is seen in chemical valence, for it is essentially by means of these mysterious forces that atoms cling together, their outer electrons busily shuttling identity and position back and forth to weave a bond that knits the atoms into molecules.
Such are the fascinating concepts that emerged from the quantum mechanical revolution. The days of tumult shook science to its deepest foundations. They brought a new charter to science, and perhaps even cast a new light on the significance of the scientific method itself. The physics that survived the revolution was vastly changed, and strangely so, its whole outlook drastically altered. Where once it confidently sought a clear-cut mechanical model of nature for all to behold, it now contented itself with abstract, esoteric forms which may not be clearly focused by the unmathematical eye of the imagination. Is it as strongly confident as once it seemed to be in younger days, or has internal upheaval undermined its health and robbed it of its powers? Has quantum mechanics been an advance or a retreat?
If it has been a retreat in any sense at all, it has been a
strategic retreat from the suffocating determinism of classical physics, which channeled and all but surrounded the advancing forces of science. Whether or not science, later in its quest, may once more encounter a deep causality, the determinism of the nineteenth century, for all the great discoveries it sired, was rapidly becoming an impediment to progress. When Planck first discovered the infinitesimal existence of the quantum, it seemed there could be ne nroper place for it anywhere in the whole broad domain of phis :cal science. Yet in a brief quarter century, so powerful did it prove, it thrust itself into every nook and cranny, its influebie growing to such undreamed-of proportions that the whole aspect of science was utterly transformed. With explosive violence it finally thrust through the restraining walls of detrminism, releasing the pent-up forces of scientific progress to pour into the untouched fertile plains beyond, there to reap an untold harvest of discovery while still retaining the use of those splendid edifices it had crcated within the classical domain. The older theories were made more secure than ever, thcir triumphs unimpaircd and thcir failures mitigated, for now their validity was establishea wherever the influence of the quantum might momentarily be neglected. Their failures were no longer disquieting perplexities which threatened to undermine the whole structure and bring it toppling down. With proper diagnosis the classical structures could be saved for special purposes, and their very weaknesses turned to good account as strong corroborations of the newer ideas; ideas which transccnded the old without destroying their limited effectiveness.

True, the newer theory baffled the untutored imagination, and was formidably abstract as no physcical theory had ever been before. But this was a small price to pay for its extraor-
dinary accomplishments. Newton's theory too had once scemed almost incredible, as also had that of Maxwell, and strange though quantum mechanics might appear, it was firmly founded on fundamental experiment. Here at long last was a theory which could embrace that primitive, salient fact of our material universe, that simple, cveryday fact on which the Maxwellian theory so spectacularly foundered, the enduring stability of the different elements and of their physical and chemical propertics. Nor was the new theory too rigid in this regard, but could equally well embrace the fact of radioactive transformation. Here at last was a theory which could yield the precise details of the enormously intricate data of spectroscopy. The photoclectric effect and a host of kindred phenomena succumbed to the new ideas, as too did the wavelike interference effects which formerly seemed to contradict them. With the aid of relativity, the spin of the electron was incorporated with remarkable felicity and success. Pauli's exclusion principle took on a broader significance, and througlt it the science of chemistry acquired a new theoretical basis amounting almost to a new science, theoretical chemistry, capable of solving problems hitherto beyond the reach of the theorist. The theory of metallic magnetism was brilliantly transformed, and staggering difficulties in the theory of the flow of electricity through metals were removed as if by magic thanks to quantum mechanics, and especially to Pauli's exclusion principle. The atomic nucleus was to yield up invaluable secrets to the new quantum physics, as will be told; secrets which could not be revealed at all to the classical theory, since that theory was too primitive to comprehend them; secrets so abstruse they may not even be uttered except in quantum terms. Our understanding of the nature of the tremendous forces residing in the
atomic nucleus, incomplete though it be, would be meager indeed $w$ thout the quantum theory to guide our search and encourage our comprehension in these most intriguing and mysterious regions of the universe. This is no more tian a glimpse of the unparalleled achievements of quantum nuechanics. The wealth of accomplishment and corroborative evidence is simply staggering.
"Daddy, to scientists really know what they are talking about?"
To still an inquiring child one is sometimes driven to regrettable extremes. Was our affirmative answer honest in this particular instance?

Certainly it was honest enough in its context, immediately following the two other questions. But what of this same question now, standing alone? Do sc:entists really know what they are talking about?

If we allowed the poets and philosophers and priests to decide, they would assuredly decide, on lofty grounds, against the physicists-quite irrespective of quantum mechanics. But on sufficiently lofty grounds the poets, philosophers, and priests thc:.aselves may scarcely claim they know whereof they talk, and in some instances, far from lofty, science has caugl:t both them and itself in outright error.

True, the universe is more than a collection of objective experimental data; more than the complexus of theories, abstractions, and special assumptions devised to hold the data together; more, indeed, than any construct modeled on this cold objectivity. For there is a deeper, more subjective world, a world of sensation and emotion, of aesthetic, moral, and religious values as yet beyond the grasp of objective science. And towering majestically over all, inscrutable and inescapable,
is the awful mystery of Existence itsclf, to confound the mind with an cternal enigma.
But let us descend from these to more mundanc levels, for then the quantum physicist may make a truly impressive casc; a case, moreover, backed by innumerable interlocking experiments forming a proof of stupendous cogency. Where else could one find a proof so overwhelming? How could one doubt the validity of so victorious a system? Mcn are hangc 1 on evidence which, by comparison, must secm small and inconsequential beyond measure. Surcly, then, the quantum physicists know what they are talking about. Surely their present theories are proper theories of the workings of the universe. Surely physical nature camot be markedly different from what has at last so painfully been revcaled.
And yet, if this is cur belief, surely our whole story lo as been told in cam. Here, for instance, is a confident utterance of the yсаг 1889 :
"The wave theory of hght is from the point of view of heman beings a certainty."
It was no irresponsible visionaty who made this bold assertion, no fifth-rate incompetent whose views might be lightly laughed away. It was the very man whose classic experiments, more than those of any other, established the electrical chatactcr of the waves of light; none other than the great Heinrich Hertz limsself, whose own secmingly incidental observation contained the seed from which there later was to spring the revitalized particle thcory.
Did not the classical physicists point to overwhelming evidence in support of their thecuries, theorics which now seem to us so incomplete and superficial? Did they not generally belicve that physics was near its end, its main problems solved and its
basis fully reveales, with only a little swecping up and polishing left to occupy succeedung generations? And did they not beleve these thurgs even where they were aware of such unsolved puzzics as the violet catastrophe, and the photoclectric effect, and radioactive disintegration?

The experimental proofs of science are not ultimate proofs. Experiment, that final arbiter of science, has something of the aspect of an oracle, its precise factual pronouncements couched in muffled language of deceptive import. Wriile $t$. Bohr such a thing as the Balmer ladder meant orbits and jumps, to Schrodinger it meant a smeared-nut essence of $\psi$; neither vew is accepted at this moment. Even the measurement of the speed of light in water, that scemingly clear-cut experiment specifically conceived to decide between wave and particle, yielded a truth whose import was misconstrued. Science abounds with similar instances. Each change of theory demonstrates anew the uncertain certainty of experiment. One would be bold indeed to assert that science at last has reached an ultimate theory, that the quantum theory as we know it now will survive with only superficial alteration. It may be so, but we are unable to prove it, and cerrainly precedent would scem to he against it. The quantum physicist does not know whether he knows what he is talking about. But this at least he does know, that lus talk, however incorrect it may ultimately prove to be, is at prescit immeasurabiy superior to that of his classical forebcars, and better founded in fact than ever before. And that is surcly something well worth knowing.
Never had fundamental science secn an era so explosively triumphant. With such revolutionary conccipts as relativity and the quantum theory developing simultancously, physies experienced a turmoil of upheaval and transformation without
parallel in its history. The majestic motions of the heavens and the innermost tremblings of the atoms alike came under the searching scrutiny of the now theorics. Man's concepts of time and space, of matter and radiation, energy, momentum, and causality, even of science and of the universe itself, all were transmuted under the clectrifying impact of the doubie revolution. Here in our story we have followed the frenzied fortunes of the quantum during those fabulous years, from its first hesitant conception in the minds of gifted men, through precarious early years of infancy, to a temporary lodgment in the primitive theory of Bohr, there to prepare for a bewildering and spcctacular leap into maturity that was to turn the orderly landscape of science into a scene of utmost confusion. Gradually, from the confusion we saw a new landscape emerge, barely recognizable, serene, and immeasurably extended, and once more orderly and neat as befits the landscape of science.
The new ideas, when first they came, were wholly repugnant to the older scientists whose minds were firmly set in traditional ways. In those days even the flexible mir of the younger men found them startling. Yet now th : i ists of the ncw generation, like infants incomprehens $s$, enjoying their cod-liver oil, lap up these quantum ideas with hearty appetite, untroubled by the misgivings and gnawing doubts which so sorely plagued their elders. Thus to the already burdenscme hist of scientific corroborations and proofs may now be added this crowning testimony out of the mouths of babes and sucklings. The quanum has arrived. The tale is told. Let the final curtain fall.
But cre the curtan falls we of the audience thrust forward, noe yet satisfied. We are not specialists in atomic physics. We are but plain men who daily go about our appointed tasks, and
of an evening peer hesitantly over the shoulder of the scientific theorist to glimpse the enchanted pageant that passes before his mind. Is all this business of wavicles and lack of causality in space and time something which the theorist c.mn now accept with screnty? Can we cursclves uever leam to welcome it with any decp fecling of acceptance? Whein so alien a world has been revealed to us we cannot but shrink from its vast unfriendliness. It is a world far removed from our cveryday experience. It offers no simple comfort. It beckons us without warmth. We are saddened that science should lave taken this curious, unhappy turn, ever away from the beliefs we most fondly cherish. Surely, we console ourselves, it is but a temporary aberration. Surcly science will someday find the tenuous road back to nornalcy, and ordmary men will once more understand its message, simple and clear, and nutroubled by abstract paradox.

But we must remember that men have always felt thus when a bold new ide.a has arisen, be the idea right or wrong. When men first proclaimed the carth was not flat, did they not propose a paradox as devilish and devastating as any we have met in our talc of the quantum? How utterly fantastic must such a belicf at first have appeared to most people; this belief which is now so teadrly and blindly accepted by children, aganst the clearest evidence of therr immediate senses, that they are quick to ridicule the solitary crank who still may claim the caith is flat; their only concern, if any, is for the welfare of the pooi people on the other side of this our round carth who, they so vividly reason, are fated to live out their heves walking on their heads. Let uc pray that political wisdom and heaveri-sent luck be granted us so that our children's children mav Di able as readily to accept the quantum horrors of today
and laugh at the fears and misgivings of their benighted ancestors, those poor souls who still believed in old-fashioned waves and particles, and the necessity for national sovereignty, and all the other superstitions of an outworn age.
It is not on the basis of our routine feelings that we should try here to weigh the value and significance of the quantum revolution. It is rather on the basis of its innate logic.
"What!" you will exclaim. "Its innate logic? Surely that is the last thing we could grant it. We have to concede its overwhelming experimental support. But innate logic, a sort of aura to compel our belief, experiment or no experiment? No, that is too much. The new ideas are not innately acceptable, nor will talking ever make them so. Experiment forced them on us, but we cannot feel their incvitability. We accept them only laboriously, after much obstinate struggle. We shall never see their decper meaning as in a flash of revelation. 'Though Nature be for them, our whole nature is against them. Imnate logic? No! Just bitter medicine."
But there is yet a possibility. Perhaps there is after all some innate logic in the quantum theory. Perlaps we may yet see in it a profoundly simple revelation, by whose light the ideas of the older science may appear as laughable as the doctrine that the carth is flat. We have but to remind ourselves that our ideas of space and time came to us through our everyday experience and were gradually refined by the careful experiment of the scientist. As experiment became more precise, space and time began to assume a new aspect. Even the relatively superficial experiment of Michelson and Morley, back in 1887, ultimately led to the shattering of some of our concepts of space and time by the theory of relativity. Nowadays, through the decper techniques of the modern physicist we find that
space and time as we know them so familiarly, and even space and time as relativity knows them, simply do not fit the more profound pattern of existence revealed by atomic experiment.

What, after all, are these mystic entities space and time? We tend to take them for granted. We imagine space to be so smooth and precise we can define within it such a thing as a point-something having no size at all but only a continuing location. Now, this is all very well in abstiact thought. Indeed, it seems almost an unavoidable necessity. Yet if we examine it in the light of the quantum discoveries, do we not find the beginning of a doubt? For how would we try to fix such a disembodied location in actual physical space as distinct from the purely mental image of space we have within our minds? What is the smallest, most delicate instrument we could use in order to locate it? Certainly not our finger. That could suffice to point out a house, or a pebble, or even, with difficulty, a particular giain of sand. But for a point it is far too gross.
What of the point of a needle, then? Better. But far from adequate. Look at the needle point under a microscope and the reason is clear, for it there appears as a pitted, tortured landscape, shapeless and useless. What then? We must try smaller and ever smaller, finer and ever finer indicators. But try as we will we cannot continue indefinitely. The ultimate point will always elude us. For in the end we shall come to such things as individual electrons, or nuclei, or photons, and beyond these, in the present state of science, we cannot go. What has become, then, of our idea of the location of a point? Has it not somehow dissolved away amid the swirling wavicles? True, we have said that we may know the exact position of a wavicle if we will sacrifice all knowledge of its motion. Yet even here there happen to be theoretical reasons conrected with Comp-
ton's experiment which limit the precision with which this position may be known. Even supposing the nosition could be known with the utmost exactitude, would we then have a pois. such as we have in mind? No. For a point has a cominuing location, while our location would be cranescent. iic would still have mercly a sort of abstract wavicle rather than an abstract point. X?.ether we think of an electron as a wavicle, or whether we think of it as a particle buffeted by the photons under a Heisenberg microscope, we find that the physical notion of a precise, continuing location cscapes us. Though we have reached the present theoretical limit of refinement we have not yet found location. Indeed, we seem to be further from it than when we so hopefully started out. Space is not so simple a concept as we had naïvely thought.

It is much as if we sought to observe a detail in a newspaper photograph. We look at the picture more closcly but the tantalizing detail still -apes us. Annoyed, we bring a magnify. ing glass to bear upon :, and lo! our cager optimism is shattered. We find ourselves far worse off than before. What seemed to be an cye has now dissolved away into a meaning. less jumble of spiotches of black and white. The detail we had imagined simply was not there. Yet from a distance the picture still looks perfect.

Perhaps it is the same with space, and with time too. Instinctively we feel they have infinite detail. But when we bring to bear on them our most refined techniques of observation and precise measurcment we find that the infinite detall we had imagined has somehow vanished away. It is not space and time that are basic, but the fundamental particles of matter or energy themsclves. Without these we could not have formed even the picture we instinctively have of a smooth, un-
blemished, faultless, and infinitely detailed space and time. These electrons and the other fundamental particles, they do not exist in spare and time. It is space and time that exist because of them. These particles-wavicles, as we must regard them if we wish to mix in our inappropriate, anthropomorphic fancies of space and time-these fundamental particles precede and transcend the concepts of space and time. They are deeper and more fundamental, more primitive and primordial. It is out of them in the untold aggregate that we build our spatial and temporal concepts, much as out of the multitude of seemingly haphazard dots and splotches of the newspaper photograph we build in our minds a smooth, unblemished portrait; much as from the swift succession of quite motionless pictures projected on a motion-picture screen we build in our minds the illusion of smooth, continuous motion.
Perhaps it is this which the quantum theory is striving to express. Perhaps it is this which makes it seem so paradoxical. If space and time are not the fundamental stuff of the universe but merely particular average, statistical effects of crowds of more fundamental entities lying deeper down, it is no longer strange that these fundamental entitics, when imagined as existing in space and time, should exhibit such ill-matched propertics as those of wave and particle. There may, after all, be some innate logic in the paradoxes of quantum physics.

This idea of average effects which do not belong to the individual is nothing new to science. Temperature, so real and definite that we can read it with a simple thermometer, is merely a statistical effect of chaotic molecular motions. Nor are we at all troubled that it should be so. The air pressure in our automobile tires is but the statistical effect of a ceascless bombardment by tireless air molecules. A single molecule has
neither temperature nor pressure in any ordnary sense of those terms. Ordinary temperature and pressure are crowd effects. When we try to examine them too closely; by observing an individual molecule, they sinply vanish away. Take the smooth flow of water. It too vanishes away when we exanine a single water molecule. It is no more than a potent mytlo created out of the myriad motions of water molecules in enormens numbers.
So too may it well be with space and time themselves, though this is something far more difficult to imagine even tentatively. As the individual water molecules lack the everyday qualhics of temperature, pressure, and fluidity, as single letters of the alphabet lack the quality of poetr: so perhaps may the fundamental particles of the umverse ind widually lack the quality of exsting in space and tmes; the very space and time which the particles themselves, in the enormous aggregate, falsely present to us as entitics so pre-cminently fundamental we can hardly conceive oi any existence at all without them. Sec how it all fits in now. 'I he quantem paradoxes are of our own makng, for we have tried to follow the motions of indisidual particles through space and time, whene all along these moducidmal partecles hanc no cxistence in space ard time. It is space and tranc that exost through the particles. An induidual partecle is not 1 m two places at once. It is in no place at all. Would we fecl amazed and upset that a thought could be in two places at once? A thought, if we magine it as somethemg outsde our brain, has no quality of location. If we did wish to locate it hypothctically, for any particular reason, we would expect it to transcend the ordmary limntations of space and time. It is only because we lase all along regarded matter as existing in space and trine that we find it so hard to renounce
this idea for the individual particles. But once we do renounce it the paradoxes vanish away and the message of the quantum suddenly becomes clear: space and time are not fundamental.
Speculation? Certainly. But so is all theorizing. While nothing so drastic has yet been really incorporated into the mathematical fabric of quantum mechanics, this may well be because of the formidable technical and emotional problems involvcd. Meanwhile quantum theorists find themselves more and more strongly thrust toward some such speculation. It would solve so many problems. But nobody knows how to set about giving it proper mathematical expression. If something such as this shall prove to be the true nature of space and time, then relativity and the quantum theory as they now stand would appear to be quite irreconcilable. For relativity, as a field theory, must look on space and time as basic entities, while the quantum theory, for all its present technical inability to emancipate itself from the space-time tyranny, tends very strongly against that view. Yet there is a deal of truth in both relativity and the present quantum theory, and neither can wholly succumb to the other. Where the two theories meet there is a vital ferment. A process of cross-fertilization is under way. Out of it someday will spring a new and far more potent theory, bearing hereditary traces of its two illustrious ancestors, which will ultimately fall heir to all their rich possessions and spread itself to bring their separate domains under a single rule. What will then survive of our present ideas no one can say. Already we have seen waves and particles and causality and space and time all undermined. Let us hasten to bring the curtain down in a rush lest something really serious should happen.

# The Evolution of the Physicist's Picture of Nature 

Paul A. M. Dirac
a this article I should lihe to discuss the developinent of gerneral physical theory how it developed in the past and hou one may expect it to develop in the future. One can look on this contmual development as a process of evo. lution, a process that has been gomg on for several centuries
The first man step in this process of cvolution was brought about by Newton Before Newton, people looked on the world as bemg essentally two-dimen-sonal-the two dimensions in whech one can walk about-and the up and-down dimension seemed to be sometbing ersentially different Neuton shoucd how one can look on the up and-down direction as being symmetrical with the other two directions, by bringing in gravit. thonal forces and showng hou the v take there place in phesieal theory One can say that Newton enabled as to pms from a preture with two-dimensional sim metry to a pictive whth three-dimencion. al symmetry

Einstem made another step in the same direction, showng hou one can pass from a preture wh three chmensional symmetry to a picture with four. dimensional symmetry Einstem brought in tume and showed how it phus a role that is in many ways summetrical with the three space dimensions Howerer, this symmetry is not gute perfect With

Emestern's pecture one is led to think of the world from a four-dimensional pont of view, but the four himemsions are not completeh sommetrical There ne some directions it the fon: dimensmal pac thre that are different from others directom that we cuiled oull dire tiom along which it ras of light can move, hence the four dirneisumal picture is not completely summetrical still, there is. great deal of summetr amone the four dmemens the onls lich of smmetrs whar us concerns the equations of phas. iss 5 in the appearame of a manm ung in the equitum with reeplect to the thane damemson as compareal with the three pace dimentiom [we top equation on page 4]
We have, then, the dewelopment from the three dimensumal preture of the word to the fecur-dmemsonal pucture The reuder will probable not be happ with thas situation. becollise the world will upears three dimemanal to lus conscoonsmes How an one bring thas appearame moto the four denemional phetare that Fustron rewers the $\boldsymbol{a}^{\text {hos. }}$ (at to hane ${ }^{2}$
Whit appears to our convolousness is reall a three dimenson al section of the four dumermonat priture We must tohe a thre e-dmensional metior 0 o giver us
 time, at a later tune we shall howe a
different three dmemenomai section The tath of the phricist conves largel of rilating crent in one of these sec comen to weut wa another secton refermig to 1 luter time Thus the preture with fom dime monalal simmetri dors not give us the whole stuation Fhas becone's par te culark important when ore tahers inte weomut the developmerse that hase becon bronght about $h$ quantum theor Qumbun theors has tanght is that we hase to tahe the process of obersation into deount, and obsernatems usuall regure es to bring an the threedimen sonal sectuon of the four dimensonal preture of the unnerse
The yeechal theors of celatinty which Eirstem introduced, retpures us to put all the lass of phases moto a form that daplas four dimensonalummetr But "hen we we tha we law to get result dhout wheration we have to brm ill somethate addin al to the four dimen wond smmetr, namek the thee do menstomal eettom that describe cur conctounhes of the buncerse at a cer tunteme'

Winctem mide another most mpe 'ant F contribution to the developme to our phasical pucture he put forsard the - neral theon of relationt, whitre suares as to suppore that the spie of phases as curned Before this ehos costs
butherassuorhed with a flat youce the thee dime inomad that sace of \exitom wheh wathen entencied to the four

 portant ementhution the the colutan of aur phatal piture be reguting on is gooner tocursed yace the cental re gureme $n$, of tha the ors me an that all
 cursed fom dam womad apoe, ind thot the show wnumetr among the forms dimemoms but agam, whon we want to brieg it oheratiom an we mase if we look it thugs from the pont of virw of gumbint thom, we have to refer to . 1 sectonn of thas four dimenomil ypace With the fom-dimemsonal ypace cumed. din wecton that he mathe mit thohate to be comed, because in gemeral we canot give a meamog to a flat weton in a cursed yase Ilas leads as to a parture mathe we hase to take curned theedime tis:onal we chom in the curned four. dumenemal pate and docus obserbat tomen theor vectroms
Dyming the part few weas propheline been trang to apply yuntum deas to
[yAntitun a well in ta the ather pheromerm of phose and tha has led to a rather ume yperted development abme h that what one hokh at gratia thand theors han the pemit of sex of the wotoms me fard that there are wome de cue a of fretion thit drep ont of the theon the eravitutemal fidd a temon fe fa weth lo components One frais thit wr of the compon nts are ade-
 c.ll importame and the ather four can be douped out of the erpatom One con not homeves, peh ont the in mport.me component, from the (omple te set of 10 man wa that does mot destras the fous dmembonal wmmetr 7 law if one mase on prexerane foris dime nomal "wmerts me the equatoms one c.manot adape the the criv of eravitatem to . 1 dis
 guantum theors tequar. wothout be ing forsed tor mome compheated de serpton than wareded be the phumed sthateon This remble haled me to doube how fundarmentil the fout dimemonal segurement in phase is $A$ few decades igo st se emed yunte certann that one nad


SAAC NEWTON 1612 17271, with his law of gravitation, changed the phemerisi pieture of nature from one with wo dimenuonal summetrv to one with threedimensond symmetry This drawing of him wabmade in 1760 by Jamen, Marartifl from a panting by $F$ norh Seeman
to express the whole of phe sus in fourdme:conald form But now th secm that four-dinemanal wimmetris not of such osernding mportince sule the desenp ton an meture vanctimes gets omplified when ome dephots fiom it
Vow I whom the ' 1 proceed to the develpments that have bern brought dbout b ${ }^{\text {brintum }}$ theore $Q_{\text {blatum }}$
 thans and it has formed the man sub ject of phinas for the past GO wears [ume the permd phwors have been
 formitem and developmg a theorv to corre yound to it, and tha crmbanation of the or and experment han led to monpartant developme nes in the physust's pecture of the word

Whe gatantum firct made its appearance when Phank diveosered the need to suppowe that the energy of electromagnetic waes com exist onls in mul. tiplen of a certinn wate, depending on the frequence of the wares, in order to explam the lau of blath bode radation Then Einstem discovered the same unt of ererge occuming in the photocectric effect In the carly work on quantum theors one smply had to acer to tac unt of errergs without beng a' to ineorperate it mona phesical pict , re.
'The first new pacture that appeared wis Bohr's phe fure of the atom It was a peture in which we had edectrons movang about in corran well defined oibuts and accaomath mahing a jump from one orbe' to abother We could not pu ture hom the jump took phace We just hade to arrept it as a hind of dasconturumts Bohrs peture of the atom worhedonk for cpectil exumples, aseon. Hall when there was onk one electron thin was of importance for the problem under conaderation thus the preture "ふ. an momplett and panmene one
lhe big adance in the qumetum the on come in 1925, whth the discovers of quantum mechantes Thes aduance was bronght about ind pendentle bitwo men, He ise nberg first and Schroxdmger soon afterward, worhing from different pount of wew Hexsenberg worked heep. mig close to the expermental evidene .bout spectra that uas berog unnserd at that time and he found out how the ex. perimental mformation could be fitted mote atheme that anow hnown an maters mechames All the experamental dista of spectrincop fitted beantifull into the scherne of matrix mee hames, and thin led to quite a different picture of the atome world schrodinger worked from a more mithematical point of view, try. ing to fird a beautiful theory for describ.
 Braghe side co w warmerited with partules lhe was able to atod D) Broghes sule wandtoget a m in be matul Gquatum, hoown a blaceluigo wase equation, for dexolbug tome pex cancs beluodinger got tha anattom b pues thourthe lowhing for wome be wetul
 ger ber mornd
 devedopment of the subjeet in the w., Ha semberg did
1 might tell wou the ston 1 be udf fiom Schoodnger of how when be fine got the adea for the equatoon, he mene diate Is apphed st to the behator of the clec tion in the lindrogen atom, and then he got results that did not ugree with experiment The disugretment arowe be. couse at that tume it was not hown that the ede ctron has a epon rhat, of course, was a great dawpontment to bchodonger, and it came ta ham to ab indon the work for wime menth then he atoteed this, if he apphed the theor in a more upf rommate wa, bot t... , into ac contht the refmement requat here la. tivit. to the munh ppronanitom has work was in egreament with obervatoon He publaned has fust peper woth onls the tough appoum then, und in
 was presented to the world Areiward. of course, when perple found out how to t.ahe meto actomint conterth the epan of the electron, the dactepinac, between theresults of applang Selatodnger's relaorsutic equation and the experments "a completely eleared up

I thork there is a moral to thas story; numel that it is mise umpurtint to hac beaut: in ares stpatiom, than to have them fit experment If Scheodinger had been more confudent of has work, he could have pullohed it some months carlere, and he could have publihed a more accurate equation Tbat equatoma now hnown as the Klem Gordon equatron. athought was reall diseoveted by Schrodinger, and in fact was discovered b) Sehrodinger before he diseove red has nonrelativistie treatment of the hydre gen atom It seems that if one a working from the pont of vew of geting beauty
 a sound misght. one son a sure line of progices if the re w rot complite hgre ment between the results of one a work and experment, one bhould rot allon oneself to be too doemiraged, becrase the docrepiney mav well be doe to monor festures thit ne not propersh taken suto account and that will get cleared up with further developments of whe theory


ALBERT FIVSTEIN (18:9 1955), with his wealal theors of erlatwiv, chanzed the phes (at'o pirture from on, with three dimenolenal $\sqrt{ }$ mmetre so one with four dimeneional on


Ihnt show tumtum methas was discorered it lad to a doster danes in the phancct p petart of the wonlet pethipe the heswe th,t h., wet toket place lhave hisg come - form one hat

 fed to. atheors that dor n bot predect wit
 future but цas a deformation omk whout the pobibltis of occurtame of sarom esent Itw gamg up of deter mancy has lecol a vers contumental whipet ad veme people do not like it at


Vlthouch Fmaten wh, me of the ctest obitrimess to the deve lopment of quan
 "1 hontule to the form thit quatum me (hasinc a what mote dumge has be thene and that it till ne tums

The bontalis wane people have to the accug up of the determanisic pothere ( 11 be centerid on 1 much dicuened paper bin ! meten Poxdelkh and Rown de lhag with the difforiles one has it formeng 1 comsete nt puture thats vell gre a whth acordang tos tha ralo of
 timin me hames we quite de frute People


NIEIS BOHR (1885 1962) introdured the idea that the electron mosed about the nucleus in well defined orbite Ths photorraph was made in 1922, nine years after the publication of his paper


MAX PLANCK 1005 S ; 047 ) introduced the idea that electro magnetic radiation comentiof quanta, or pati.i..- Thia photograph nas made in 1913, 13 years afler his orignal paper was pubilished
know hou to calculate results and how to compare the results of therr ealabations whth experment Exeryone is agreed on the formalam th works so well thit nobod cas afford to disagree with: But still the peture that we are to set up lehund this formalism is a subject of contoversy
I should hike to suggest that one not worrs too much about thu conr rovers I feel very utronglv that the stage p bincs has reached at the present day 1 act the final stage it is just one stage in the evo mation of our picture of nature, and we hould expect thas process of evolution to contmue in the future, is Leological evolution contmues into the future The prese int se.ge" of phystal theronv is inere. i) a "teppongetone toward the better stages we shill hate in the future One can be gutc sure that there will be beter thages simply beconuse of the difficulties that occur in the physics of today

I should nou like to dwell a bit on the difficultues in the phyues of the present day The reader who is not an expert in the subject might get the adea that beeause of all these difficulters physical theory is in pretty poor shape and that the quantum the or is not mueh good I should lake to correct this impres. sion br suyng that quantum theory is an "xtremelv good theory It gises wonder. ful agrecment with observation over a wide tange of phenomema there is no doubt that it is a fered theors, and the onl reason phesicats tall so much aboont
the difficulties in it is that it is precisely the difficuities that are mitcesting 7 he successes of the theors are all taken for gramed One does not get anywhare samph by gong over the suc eesses agam and agim, whereas be talking over the difficutte's people can hope to make some progress
The diffecuiters in gumam theory are of two hends I mught call thern Class One diffeculters and Chess Two difficuleies Class One difficulters are the difficultes 1 have aheadvementioned How can one form a comstent pueture behond the mles for the present guantum theory? These ( lass One difficultes donot rently worry the phasest If the physacost know, how to calculate results and compare them witl experiment, he is riute h peve if the results agree with his ex perments. and that 15 all he needs It is onis the phalosopher, uantmg to hive i sationang deverption of natire, who is bothered b: (law Once difficulters

There are, an addition to the (liss Ono diffoulters, the Class Fno difficultes, which stem from the fact that the present haws of quantum theory are not alu, jo adeduate to give amy results il one pushes the laus to extreme conditionsto phemonena moolving very high energies or vers smill distances-one some tanes gets resules that are amburuous or
 that one has reached the hants of apple cution of the therery and that some fur. ther development a neded the Class Iwo diffenita's ire importint even for
the physicist, because they put a himit. tom on now far he can use the rules of quantur theory to get results comparable with experiment
I should like to sav a hitte more about the Class Oue difficulties I feel that one should not be bothered with them ton much, because they are difficultes that refer ta the present stige in the developnent of our phisical picture and are almost certan to change whth future development There is one strong reason, I thonk, why one ean be quite confident thit there difficulters will chinge There are some fundanertal constants in na. ture the charge on the electron (desig nuted el, Planch's constant divided bv 2- (designated $h$ ) and the velocity of hght ( $c$ ) From these fundamental con. stants one can construet a number that has no dimensions the number $h e / e^{2}$ That nurber is found by experment to hase the watue 137, or somethung very close to 137 Now, there is no known rewson whi it should have this value ruther than some other number Various prople lave put forward adeas about it, but there is 110 accepted theory Still, onc con be Garly' sure that someday phesicists will solve the problem and explan why the number has this value Ihere will be a physics in the future that uorks when he/ $\mathrm{c}^{2}$ has the value 137 and that will not work whe it it has any other value
The phases of the future, of course, ounot have the three quantities $\hbar, C$ and c.allas fundimental quantites Only two
of them can be tundarne ntal mad the thard must be de resed from thowe two it asiment cetan that e will be one of the wo fordamental oner The selorets of light $c$. is so mpont int in the four damens:nalal puctare, ani it plas. wich. fundamental role in the spectid thems of relationts, correlating our ums of space and tume, that at has to be thad ame ntal Then we are faced with the fat that of the tuo qumeties $h$, and $a$ ont will be fomdemental and one will be derned if $h$ is famdamentat, ce will hase to be ca planed mome was in terms of the scuare root of $t$, and if wetms mont un hikels that ome fundumental the ors (at give e in terms of a seluive root, wime gquare roots do not oceur in bunc equa rons it is mueh nore lihels thise $c$ will be the fundamental qumatits and that $t$ will be explamee in temme of at Then there will be no aquise root in the bist equations 1 thimh one is on safe ground it one mathes the guese that in the phan cal pueture we shall hase it wome future stage e and $c$ will be fundamontal quan hties and fo will be derned
If $h$ is a derned qumbtre menead of a fundamental one, our whole set of ideas about uncertants wall be atecred $h_{6}$ is the fundamental quantite that occurs in the Henemberg uncertanty relation connecting the amount of uncertants in a positian and in a monerotum the uncertames relation car"ot pha a fundamental sole in a theor in whin it it self es not a fundamentad quintits I thonk one can make a safe guess that meertanty relations in ther present form will not survive in the phs sics of the future

0
course there will not be a return to the determansm of classeal physi cal theory Fiolution der not go bickward It whll have to go fornard There wall hase to be some new debelopment that is quite mexpected that we tannot make a gut ss about, which will tike us still further from chawd :deas but which wall atter completelv the daseas son of ancertunts relations And when this new dewelomment occurs, people will find at all rather furter to have had so much of a discusion on the role of observation in the theorv, bet ance they will have then a much better point of view from which to look at things Sol shall say that if we can find a w.is to desernbe the uncertanty relations and the indeterminacy of present quantum mechames that is satisfung to our phito sophical ideas, we can connt ourselves lucky But if we cannot find such a way, it is nothing to he really disturbed about We simply have to take into account that we are at a transitional stage
und that perthpe it aguote mpmoble
 Thas dapowed of the (lmone dit

 progre wheth the mat (th count and alf luh methe it are (amot it a
 The ( low lwa dafic abte are the :c.lll
 the fiet thit wheri we reph our ghan tum theon to fied.h m the want has to if we, are tomate it las "with emedal
 there dimentonal wethom I have men
 look all right but whe none tree to whe them one find that the do not hase am coluthon lt the peme we watht to sat hat we do not hase a the on But phas ast are wers mige mexn about it, and thes hase fomind a was to make prog rew in were of the ohtule I hers fand thite when the s ti to whe the cqu tiom. the trouble is that certan ${ }^{\text {flomathe }}$ that oughe to be femte are actualls in finte One gets integr,h that duage ontead of coneringe to somethng defi nate Phy siests have found that there is a
 tolertatimb whelimitherat porable (6) Let de fame revults llas me thod is kuann whe remomileaturn method
| hatmanh aphan the oden mands We wist wat with a theos moknom quanm- la there equatom the se ocour "rime pametes the change of the he $m$ "the muo of the clection, $m$, med thang of a umblar matise One then find that there gutneties whoh appear tot the orgmal equations, we not equi Whe meavare d when of the eharge and the man of the chectron The measured - ilue difla from these be ertam correting term- $A$, $\Delta m$ and so on-so that the totai tharge is $c$. lie and the total man $m$ - $\Delta m$ There changes n change and mas are brought about through the interaction of our ebemen tur paracle with other thang then one sab that $\varepsilon \quad \therefore$ ind $m \rightarrow \hat{A}$, beng the obvered thans are the mpotant thang the ormonal cand $m$ are put mathematical parameters, the wre un obersable and the refore fust took one tan ducard whenone has got far enough to bring in the thags that one can com-


LOUIS DE BROGLIE (1892- ) put forward the idea that particles are associsted with usver This photograph was made in 1929, five years after the appearance of his paper.
pare with obsersatimin llas would be a fime cortect $" 11$ to proced if $\Delta r$ and $\angle$ m were small for enem if the were not so small but finte) corrections Acrording to the wtual theor however. Le and $\hat{L} m$ are infintely grent has spite of that face one can still use the formal isin and get results in terms of $c \nmid \Delta c$ and $m+4 m$. which one ean merpret by sang that the ongmale and m hine to be monus infintt of a surtable amount to compensate for the $\Delta c$ and $\Delta m$ that are infimtely great One can use the theore ta get results that ean be compurd wath experment, in purtcialar for Fertiodn numus The surproing thing is that in the case of electrodsammes one gets revults that are in cutremels good agrement with experment The agreement apple's to many hegmficant fig. ures-the hind of acturacy that preveously one had only in antronom: It is beculuse of thr good agreement that phoucosts do attieh some salue to the renormalization theors, in spate of ts llogedeharacter
It scems to be quite amposible to put this theory on a methe mitis.ill sound basis At one time physeal theorv wad all bult on mathematise that was mherently
 lase somal mathematics the offon us mesend tepe in the ir cak ulateme But prewousk when the dhe of it was sumph hecomse of one meght sal lat he" Ther wated to get walt, as yanchle is prowble wothent dene unt necersors work It wa alw.ev possuble for the pure mathematicinin to come along and make the theon vomed bo bringing, it furthernteps, and perhaps bs nitroduc ne quite o lot of cumbersome motution and other thang that are devirable from a mathematacal pome of wew in order to get eversthing eapiessed ngomens but do not contrbute to the phevesl ideas the e arher mathematios condd alw, whe made sumad in that w.as, but if the renemmatouten theors we. fhes . 4 theon the has deffed all the attempts of the mathemat' coin to mane it cond I an meltred to xuspect that the chomallation theor a omething that will not wowe mo the future. and that the remarhable .gresment between its revults ind a per iment bould be looked on is at fluke
 rig. berchace there have been vimiar thakes in the pant In fact, Bohr's dec-

$$
d s^{2}=c^{2} d t^{2}-d x^{2}-d y^{2}-d z^{2}
$$

FOUR DIMENSIONAL SYMMETRY introduced by the special theory of relativity in no quite perfect, This equation in the expreation for the mariant distance in four dimension.
 the three spatial dineensions The d's are differential. The lack of complete ammetry hes in the fact that the contribution from the time direction (cedt:) does not have the sane agn as the contributions from the three apatial directions $\left(-d x^{2},-d y\right.$ and $-d z=$

$$
\left(\frac{i h}{2 \pi c} \frac{\partial}{\partial t}+\frac{e^{2}}{c r}\right)^{2} \psi=\left[m^{2} c^{2}-\frac{h^{2}}{4 \pi^{2}}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right)\right] \psi
$$

SCHRODINGER'S FIRST W'AlE EQLATION did not fit experimental resulis becawe it did not take into accoumt the pinn of the electron, which was not known at the . me The equation ts a zenerahzanon of De Broghe', equation for the monion of a frecelectron The
 constant, $r$, the distance from the nucleus, \&. Schrodengeris wave function, $m$, the maxi of the electron The symbols resembling sixes turned lackuard are partial dernatives

$$
\left(E+\frac{e^{2}}{r}\right) \psi=-\frac{h^{2}}{8 \pi^{2} m}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) \psi
$$

SCHROLDNGER'S GECOND WADE EQUATION is an approximation to the original equation, which dors nor take into accoum the refinements that are required by rehanaty
trom orlat theor was found to gas sers Lowd ague ment with oberwition is long 15 ome cinfimed one adf to one eleztron problem I think people will now s.n hat tha agres:ac nt was a make, because the bast ultah of Bohars orbat theore hame been suparseded br womething rudhalls deferent lbeliese the sur (ewe of the renormalzaton theor will be of the same footing as the suce wesses of the Boher orbet theor apphed to one cle ctron problams

$T$
he zenombligation theors has remosed vome of the se (lass Two dif. ficultere, if ore can acrept the illogreal char uter of due.reling infintiex, but it does mot remone atl of them There are agod manv pohlemileft over cone erning partac les other thin there that come moto ele trodinumies the new particlesmesoms of varteus hind and neutronos There the theors still in a promeree thage It s famle corthin that there will hase to be drastc change's mour fund. . mentul wean before ties problems can Is whed

One of the problems the one I hane alews menthmed about serounting for the number 13: Other problems are hou to introduce the fundamentel length to phesus in seme natural way, how to expluin the rotuon of the manses of the clementiry particles and how to explan thers other properte's I beheve seporat adens will be needed to solte these dis tone problem, and that they will be solved one at a time through successive stagerm the future e volution of physics At this pome I find maxelf in disagree ment whth moth phanests Thes are me dimed to th wh one mater aden will be diseovered that will solve all the ee prob lems together 1 thank it is arhing too mut h tohope that am one will be able to solve all these problem together One shoukd separate them onc from another as much is posoble amed try to thekle the in eparatels And I belleve the fa ture ducelopment of phases will consist of sohing the on one at a time, and that fter im one of them has been solved there will still be a great inysterv ibout how to attueh further ones
1 mighe perhaps dheuss sume ideas Hathe had aboul how one cin possbly attach some of there problems None of there aleas has been worked out vern fur, and I do not have much hope for ani one of them But I think they are worth mentionng briedy
One of these ulens is to metroduce something cornespondeng to the lummer. erous ether, which was so popular among the phashits of the loth century is sand earlier that physics does not evolve beek
ward When I tith , beme semitodinemg the e ther, I do not me wh to boble to
 the lgthe chitur hent d dome intorites dice ane "perime of the ethan that will contorm torme pesplet dh an of puantom theow I he ohpecton to the old ale, of the ether war that if wom nippose it to tre . flow hitherg יip the whole of opice. III .IIN place al his a dofinte velixis whel devtros the fon dmemomal

 whente kille d this 'de . 1 if the e ther
But with our pre aent quantimen theors we no 'ringer hase to atthela a defonte

 tunter relithems Ihe maller the mans of the thung we ine mete ted we, the more mport, ant are the macertunti relatiom Aow, the c ther will certhonk howe werv little mass, bo thit matert.miti relotions for it will be entremeds mportimt the velocits of the ethers at some particular place should the refore not he pethed as definte, became it will be abject to uncersamite relateons and so ma be amythang oners a wade range of walues In that "dy one ean get cacer the differalta's of
 the spees.d theors of relutiots
Hete is one important change this will mate mour peture of ate num the would the to thant of a varimm as a region in wheh we have omplete symmetr between the four dimemons of space times required bo ypectal relane 1th If there is an ether subject to uncer timinty relations. it will not be possible to hase 'is symmetry incoratels We con suppes that the celocity of the ether as equally hacly to be amithang withon a wide range of whers that would guve the symmetry only approximately We cannot in and precne wat proceed to the himit of alloweng all values for the velocto betw een plus and manus the belocity of light, whish we would have to do in 0 der to mathe the symmetry accurite Thus the wentum becomer a state that is unattumable I do not think that this is a phescol objecten to the theorv it mould mean that the vachum is a state we can upproach wery dosel There is no lime as to how closels we cin approach it but we can never attum it I beherve that would be quite satisfactors to the expermental physicise it would, how ever, mean a dep,rture from the notom of the sucum that we hase m the quantun theory, where we start off with the vacumm state hang exactly the symmetry required by spectal relatuity
That is one aded for the development of physics in the future that would

 diea that naves are anocosted will pariocte. to the electron moving around the nucleu This photograph was made an 1929, four wars afier he had pulinalied his serand equation
change cur pecture of the wiocum, but Chinge 1 in a wast thit is not unircept able to the experime ntal phancost It has proved difficult is contmie with the theors. because one would need to act up mathematis, allv the mencertants rehtions for the ethers and sof fir some satisfactore theorv along these line han not been dis conered If it could be developed satis. fuctorik, it would gine nise to a new hind of held in phyacal theorv, who hanght help in explaming some of the elementary partacies
frother possible preture I should like to mention concerns the question of whe , il the electric charges that are oberved in nature should be moltiples of one clementary unt, $c$ Wha does one not have a continuous distribution of charge occurning in mature ${ }^{2}$ the pleture 1 propose goes bach to the adea of Inadiat lene of force and molse, development of tha ade. Iher Funatav
lime sof force are a "a of picturng elec tric field, tf we have in clecenc feld mi aris regron of apace, then according to 1 anden we cond draw a sct of limes thate have the direction of the electric furld The doreness of the lues to one wother gines a mensume of the strength of the freld-they are close where the freld is atrong and less close where the fiell s "eah The Furaday lines of force give us a good peture of the electre field in classical theor
When we go over to quantum theory, we bring it hind of discreteness into our baste picture We. ean suppose that the contimous datribution of Firadar lanes of force thite we have in the clancol pieture as replated br just a few dacrete lanes of force with no late of force be tween them

Vom, the Jme of force in the Farndas picture end where there are charge
 lame of force it would be reacomilule to
 line whkl，hat tis the ant it the





 recturn uttathedtore when with the

 the ord und a hare ，＂the whit： Wt：mas hase lime of totat istemotriat the mfinte，of coury ard the thate a tue charge

It we uppore that the：dantit
 base in phancs and lat at th lxetom of
 we－hall hase at evplamiteme of wh
 lhas haphon he buy if we hase als particle with sumic lime of foter tentere
 a whole mamber la that wa we w
 suruble

We suppose thase imes of force can


















 in the latism

Jhers （11）lat j＂utme It will quat At：the







QERNER HEIGENBFRG，（1901－I introduced natris methanir，whith，lat．the whro













 かったい！all




 －lt is the（mbind have amat the



 the－mind pere ent otresemthut tharh






 い尼prat





 ta perne the hather is a yher but





 sembid ob whtous hape rad wa







 putak，of plan＂Ita mumblas the



 tone tpat fom thas deports in mos the musu（ ）learh d）malat the
 deghe ot ateme or the vant vern mod





 mhuand But it the chatomin the wow






 mig mith comet yma


 will be ethers that othe 1"phe will thaith of Ore hope thit comet of lite
 and le od, to 1 his deselopment I ant



 tha will if ill whe oble of the fumb






 her. to work in terms of mategints

 in the finturs.
[luere wow uther law domge what

 me.tal fermen of matrere that tumbia wertal phowal law, ife de acrbbed in 4 rme of 1 int ithe on the of the ors it gre it

 arotmad it lom mas womer Whos


 ocomencted We vmph hase tonce $\mathrm{m}^{\mathrm{t}}$ tt One could perhaph dex whe the vituer thom br wismg that (ood in a mathemat
 ers ils.alle d mathe mbotocsmementime mg the umescre On le ble ,ittempenat mothemithe andak w te undentand a het of the umotse and w we proced (1) develop hights and lugher mathe matts we ( m hoge to undentand the mascose bette:

Ihan se"s prosida m wath. another "at whth we (amhop to mathe ad-
 mathemettes we (ill hope to mine a guen at ihe hand of mathe mitte, that will come mito the phanc of the future






T ¢


 bentitul if watume a the the tha whe' 'men alome whel tor mithe thade - elepment it ma bead to a future al Whe e m whth pople will have dacoser the "pateom mit then bler ceammang the til Lhethan le irn has tor rat the in former atent that come vomid with the line of docelpment that os

 ered the equatom vimpls blowhages He cquatem woth mathe nutic.al beatus

 but the generil pritipler accordang to whith one should applit it wete worked out onh ome two or thre ce bers later le mat well be that the uevt dedates in phow will come about along these line perople first docersering the equat
tums ,ad then mederig a fow sears of dwe lepme ne monder tohod the phas al ade o be hand the equatems Mr own be. lat is that tha 1 a mote laher hate of
 peture
Of coatwe, at anas be that eveln this line of progren will fall, and then the onls hane left o the expenmental one Experi neatil phowost ate comemenge them sinh quite :ndependentlv of theorv, colfecting adst stos henise of informution Suener of later there wall be a new 13. araberg who will be able to pre ont the important features of thas aforms. forn and wee how to use them in a was vimbar to that m whe h Hersenterg used the "xpermental haomkelge ai spectra to bunld las matrix mechanics it is in evitathe that phases will develop alte. matels stong these lines, but we mas hove to $w$ att quite a long tume if people do not get bright adeas for developing the theos'tical side


Yesterday \& Forever, A Computer Drawing Lloyd Sumner

## Dirac and Born

## Leopold Infeld

The greatest theoretical physicist in Cambridge was P. A. M. Dirac, one of the outstanding scientists of our generation, then a young man about thirty. He still occupies the chair of mathematics, the genealogy of which can be traced directly to Newton.

I knew nothing of Dirac, except that he was a great mathematical physicist. His papers, appearing chiefly in the Proceedings of the Roya! Society, were written with wonderful clarity and great imagination. His name is usually linked with those of Heisenberg and Schroedinger as the creators of quantum mechanics. Dirac's book The Principles of Quantum Mechanies is regarded as the bible of modern physics. It is deep, simple, lucid and original. It can only be compared in its importance and maturity to Newton's Principia. Admired by everyone as a genius, as a great star in the firmament of English physics, he created a legend around him. His thin figure with its long hands, walking in heat and cold without overcoat or hat, was a familiar one to Cambridge students. His loneliness and shyness were famous among physicists. Only a few men could penetrate his solitude. One of the fellows, a well-known physicist, zold me:
"I still find it very difficult to talk with Dirac. If I need his advice I try to formulate my question as briefly as possible. He looks for five minutes at the ceiling, five minutes at the windows, and then says 'Yes' or 'No.' And he is always right."
Once-according to a story which I heard-Dirac was lecturing in the United States and the chairman calied for questions after the lecture. One of the audience said:
"I did not understand this and this in your arguments."
Dira: sat quietly, as though the man had not spoken. A disagreeabie silence ensued, and the chairman turned to Dirac uncertanly:
"Would you not be kind enough, Professor Dirac, to answer this question?"

To which Dirac replied: "it was not a question; it was a statement."
Another story also refers to his stay in the United States. He lived in an apartment with a famous French physicist and they invariably talked English to each other. Once the French physicist, finding it difficult to explain something in English, asked Dirac, who is half English and half French:
"Do you speak French?"
"Yes. French is my mother's tongue," answered Dirac in an unusually long sentence. The French professor burst out:
"And you say this to me now, having allowed me to speak my bad, painful English for weeks! Why did you not tel! me this before"
"You did not ask me before," was Dirac's answer.
But a few scientists who knew Dirac better, who managed after years of acquaintance to talk to him, were full or praise of his gentle attitude toward everyone. They believed thai his solitude was a result of shyness and could be broken in time by careful aggressiveness and persistence.

These idiosyncrasies made it difficult to work with Dirac. The result has been that Dirac has not created a school by personal contact. He has created a school by his papers, by his book, but not by collaboration. He is one of the very few scientists who could work even on a lonely island if he had a library and could perhaps even do witlov. books and journals.
When I visited Dirac for the first time I did not know how difficult it was to talk to him as I did not then know anyone who could have warned me.
I went along the narrow wooden stairs in $S$ : John's College and kn .. sed at the door of Dirac's room. He opened it silently and with a friendly gesture indicated an armehair. ! sat down and waited for Dirac to start the conversation.. Complete silence. I began by warning my host that I spoke very little English. A friendly smile but again no answer. I had to go further:
"I talked with Professor Fowler. He told me that I am supposed to work with you. He suggested that I work on the internal conversion effect of positrons."

No answer. I waited for some time and tried a direct question:
"Do you have any objection to my working on this subject?" "No."
At least I had got a word out of Dirac.
Then I spoke of the problem, took out my pen in order to write a formula. Without sayi ig a word Dirac got up and brought paper. But my pen refused to write. Silently Dirac took out his pencil and handed it to me. Again I asked him a direct question to which I received an answer in five words which took me two days to digest. The conversation was finished. I made an attempt to prolong it.
"Do you mind if I bother you sometimes when I come across difficulties?"
"No."
I left Dirac's room, surprised and depressed. He was not forbidding, and I should have had no disagreeable feeling had I known what everyone in Cambridge knew. If he seemed peculiar to Englishmen, how much more so he seemed to a Pole who had polished his smooth tongue in Lwow cafés! One of Dirac's principles is:
"One must not start a sentence before one knows how to finish it."

Someone in Cambridge generalized this ironically:
"One must not start a life before one knows how to finish it."
It is difficult to make friends in England. The process is slow and it takes time for one to graduate from pleasantries about the weather to personal themes. But for me it was exactly right. I was safe because nobody on the island would suddenly ask me: "Have you been married:" No conversation would even approach my personal problems. The gossipy atmosphere of Lwow's cafés belonged to the past. How we worked for hours, analyzing the actions and reactions of others, inventing talks and situations, imitating their voices, mocking their weaknesses, lifting gossip to an art and cultivating it for its own sake! I was glad of an end to these pleasures. The only remarks which one is likely to hear from an Englishman, on the subject of anothers personality, are:
" He is very nice."
"He is quite nice."
Or, in the worst case:
"I believe that he is all right."
From these few variations, but much more from the subtle way in which they are spoken, one can gain a very fair picture after some practice. But the poverty of words kills the conversation after two minutes.

The first month I met scarcely anyone. The problem on which I worked required tedious calculations rather than a search for new : deas. I had never enjoyed this kind of work, but I determined to learn its technique. I worked hard. In the morning I went to a small dusty library in the Cavendish Laboratory. Every time I entered this building I became sentimental. If someone had asked me, "What is the most important place in the world?" I would have answered: "The Caverdish Laboratory." Here Maxwell and J. J. Thomson worked. From here, in the last years under Rutherford's leadership, ideas and experiments emerged which changed our picture of the exiernal world. Nearly all the great physicists of the world have lectured in this shabby old auditorium which is, by the way, the worst $I$ have ever seen.
I studied hard all day until late at night, interrupted only by a movie which took the place of the missing English conversation. I knew that I must bring results back to Poland. I knew what happened to anyone who returned empty-handed after a year on a fellowship. I had heard conversations on the subject and I needed only to change the names about to have a corrpleee picture:
A: I saw Infeld today; he is back already. What did he do in England?
B: We have just searched carefully through the science abstracts. He didn't publish anything during the whole year.
A: What? He couldn't squeeze out even one brief paper in twelve months, when he had nothing else to do and had the best help
in the world:
B: I'm sure he didn't. He is finished now. I am really very sorry for him. Loria ought to have known better than to make a fool of
himself by recommending Infeld for a himself by recommending Infeld for a Rockefeller fellowship.

A: We can have fun when Loria comes here. We'll ask him what his protégé did in England. Loria is very talkative. Let's give him a good opportunity.
B: Yes. It will be quite amusing. What about innocently asking Infeld to give a lecture about Cambridge and his work there? It will be fun to see him dodging the subject of his own work.

This is the way academic failure was discussed in Poland. I should have little right to object. Bitter competition and lack of opportunity create cthis atmosphere.
When I came to Cambridge, before the academic year began, $I$ learned that Professor Born would lecture there for a year. His name, too, is weli known to every physicist. He was as famous for the distinguished work which he did in theoretical physics as for the school which he created. Born was a professor in Goettingen, the strongest mathematical center of the world before it was destroyed by Hitler. Many mathematicians and physicists from all over the world went to Gcettingen to do research in the place associated with the shining names of Gauss in the past and Hilbert in the present. Dirac had had a fellowship in Goettingen and Heisenberg obtained his docentship there. Some of the most important papers in quantum mechanics were written in coliaboration by Born and Heisenberg. Born was the first to present the probability interpretation of quantum mechanics, introducing ideas which penerrated deeply into philosophy and are linked with the much-discussed problem of determinism and indeterminism.

I also knew that Born had recently published an interesting note in Nature, concerning the generalization of Mavwell's theory of electricity and had announced a paper, dealing at length with this problem which would appear shortly in the Proceedings of the Royal Society.

Being of Jewish blood, Professor Born had to leave Germany and immediately received five offers, from which he chose the invitation to Cambridge. For the first term he announced a course on the theory on which he was working.
I attended his lectures. The addience consisted of graduate students and fellows from other colleges, chiefly research work-
ers. Born spoke English with a heavy German accent. He was about fifty, with gray hair and a tense, intelligent face with eycs in which the suffering expression was intensified by fatigue. In the beginnin. I did not understand his lectures fully. The whole general theory seemed to be sketchy, a program rather than a finished piece of work.
His lectures and papers revealed the difference between the German and English style in scientific work, as far as general comparisons of this kind make any sense at all. It was in the tradition of the German school to publish results quickly. Papers appeared in German journals six weeks after they were sent to the editor. Characteristic of this spirit of competition and priority quarrels was a story which Loria told me of a professor of ris in Germany, a most distinguished man. This professor had a.tacked someone's work, and it turned out that he had read the paper too quickly; his attack was unjustified, and he simply had not taken the trouble to understand what the author said. When this was pointed out to him he was genuinely sorry that he had published a paper containing a severe and unjust criticism. But he consoled himself with the remark: "Better a wrong paper than no paper at all."
The English style of work is quieter and more dignified. No one is interested in quick publishing, and it matters much less to an Englishman when someone else achieves the same resuits and publishes them a few days earlier. It takes six months to print a paper in the Proceedings of the Royal Society. Priority quarrels and stealing of ideas are practically unknown in England. The attitude is: "Better no paper at all than a wrong paper."
In the beginning, as I have said, I was not greatly impressed with Born's results. But later, when he came to the concrate problem of generalizing Maxwell's equations, I found the subject exciting, closely related to the problems on which I had worked before. In general terms the idea was:
Maxwell's theory is the theory of the electromagnetic field, and it forms one of the reost important chapters in theoretical physics. Its great achievement lies in the introduction of the concept of the field. It expiains a wide region of experimental facts
but, like every theory, it has its limitations. Maxwell's theory does not explain why elementary particles like electrons exist, and it does not bind the properties of the fieid to those of matter.
After the discovery of elementary particles it was clear that Maxwell's theory, like all our theories, captures only part of the truth. And again, as always in physics, attempts were made t cover, through modifications and generalizations, a wider range of facts. Born succeeded in generalizing Maxwell's equations and replacing them by new ones. As their first approximation these new equations gave the old laws confirmed by experiments. But in addition they gare a new solution representing an elementary particle, the electron. Its phy..cal properties were determined to some extent by the new laws governing the field. The aim of this new theory was to form a bridge between two hitherto isolated and unreconciled concepts: field and natter. Born called it the Unitary Field Theory, the name indicating the union of these two fundamental concepts.
After one of his lectures I asked Born whether he would lend me a copy of his manuscript. He gave it to me with th? assurance that he would be wery happy if I would help him. I wanted to understand a point which had not been clear to me during the lecture and which seemed to me to be an essential step. Born's new thenry allowed the construction of an elementary particle, the electron, with a finite mass. Here lay the essential difference between Born's new and Maxwell's old theories. A whole chain of argument led to this theoretical deternination of the mass of the electron. I suspected that something was wrong in this detivation. On the evening of the day I received the paper the point suddenly becane clear to me. I knew that the mass of the electron was wrongly evaluated in Born's paper and I knew how to find the right value. My whole argument scemed simple and convincing to me. I could hardiy w it to tell it to Born, sure that he would see my point inmediately. The next day I went to him after his lecture and said:
"I read your paper; the mass of the electron is wrong."
Born's face looked even more tense than usual. He said:
"This is very interesting. Show me why."

Two of his audience were still present in the lecture room. I took a piece of chalk and wrote a relativistic formula for the mass density. Born interrupted me angrily:
"This problem has nothing to do with relativity theory. I don't like such a formal approach. I find nothing wrong with the way I introduced the nass." Then he turned toward the two students who were listening to our stormy discussion.
"What do you think of my derivation?"
They nodded their heads in full approval. I put down the piece of chalk and did not even try to defend my point.
Born felt a little uneasy. Leaving the lecture room, he said:
"I shall think it over."
I was annoyed at Born's behavior as well as at my own and was. $\mathfrak{E}$ or one afternoon, disgusred with Cambridge. I thought: "Here ì met two great physicists. One of them does not talk. I could as easily read his papers in Poland as here. The other talks, but he is rude." I scrutinized my argument carefully but could find nothing wrong with it. I made some further progress and found that new and interesting consequences could be drawn if the "free densities" were introduced relativistically. A different interpretation of the unitary theory could be achieved which would deepen its physical meaning.
The next day I went again to Born's lecture. He stood at the door before the lecture room. When I passed him he said to me:
"I am waiting for you. You were quite right. We will talk it over after the lecture. You must not mind my being rude. Everyone who has worked with me knows it. I have a resistance against accepting somerhing from outside. I get angry and swear but always accept after a time if it is right."

Our collaboration had begun with a quarrel, but a day later complete peace and understanding had been restored. I told Born about my new interpretation connecting more clesely and clearly, through the "iree densities," the field and partucle aspects. He immediately accepted these ideas with enthusiasm. Our coll:boration grew closer. We discussed, worked together :fter lectures, in Born's home or mine. Soon our relationship berame informal and friendly.

I ceased to work on my old problem. After three months of my stay in Cambridge we published together two notes in Nature, and a long paper, in which the foundations of the New Unitary Field Theory were laid down more deeply and carefully than before, was ready for publication in the Proceedings of the Royal Society.

For the first time in my life I had close contact with a famous, distinguished physicist, and I learned much through our relationship. Born came to my home on his bicycle whenever he wished to communicate with me, and I visited him. unannounced, whenever I felt like it. The atmosphere of his home was a combination of high intellectual level with heavy Germany pedantry. In the hall there was a wooden gadget announcing which of the members of the family were out and which were in.

I marveled at the way in which he managed his heavy correspondence, answering letters with incredible dispatch, at the same time looking through scientific papers. His tremendous collection of reprints was well ordered; even the reprints from cranks and lunatics were kept, under the heading "Idiots." Born functioned like an entire institution, combining vivid imagination with splendid organization. He worked quickly and in a restless mood. As in the case of nearly all scientists, not orly the result was important but the fact that he had achieved it. This is human, and scientists are human. The on! $y$ scientist I have ever met for whom this personal aspect of work is of no concern at all is Einstein. Perhaps to find complete freedom from human weakness we must look up to the highest level achieved by the human race. There was something childish and attractive in Born's eagerness to go ahead quickly, in his restlessness and his moods, which changed suddenly from high enthusiasm to deep depression. Sometimes when I would come with a new idea he would say rudely, "I think it is rubbish." but he never minded if I applied the same phrase to some of his ideas. But the great, the celebrated Born was as happy and as pleased as a young student at words of praise and encouragement. In his enthusiastic attitude, in the vividness of his mind, the impulsiveness with which he grasped and rejected ideas, lay his great charrı. Near his bed
he had always a pencil and a piece of paper on which to scribble his inspirations, to avold turmeng then $c$ or and over in his mind during sleepless nights.
Once I asked Born how he came to study theoretical physics. I was interested to know at what age the first impulse to choose a definite path in life crystalizes. Born told me his story. His father was a medical man, a university professor, famous and rich. When he died he left his son plenty of money and good advice. The money was sufficient, in normal times, to assure his son's independence. The advice was simply to listen during his first student year to many lectures ca many subjects and to make a choice only at the end of the first year. So young Born went to the university at Breslau, listened to lectures on law, literature, biology, music, economics, astronomy. He liked the astronomy lectures the most. Perhaps not so much for the lectures themselves as for the old Gothic building in which they were held. But he soon discovered that to understand astronomy one must know mathematics. He asked where the best mathematicians in the world were to be found and was told "Goettingen." So he went to Goettingen, where he finished his studies as a theoretical physicist, habilitated and finally tecame a professor.
"At that time, before the war," he added, "I could have done whatever I wanted with my life since I did not even know what the struggle for existence meant. I believe I could have become a successful witer or a pianist. But I found the work in theoretical physics more pleasant and more exciting than anything else."

Through our work I gained confidence in myself, a confidence that was strengthened by Born's assurance that ours was one of the pleasantest collaborations he lad ever known. Loyali, he stressed my contributions in his lectures and pointed out my share in our collaboration. I was happy in the excitement of obtaining new results and in the conviction that I was working on essential problems, the importance of which I certainly exaggerated. Having new ideas, turning blankness into understanding, suddenly firding the right solution after weeks or months of painful doubt, creates perhaps the nighest emotion man can experience. Every scientist knows this feeling of ecstasy even if his achievements are small. But this pure feeling of Eureka is mixed with overtones of very human, selfish emotions: " $I$ found it; $I$ will have an important paper; it will help me in my carecr." I was fully aware of the presence of these overtones in my own consciousness.

# I am this Whole World: Erwin Schrödinger 

Jeremy Bernstein

There is a parlor game often played by my colleagues in physics. It consists of trying to decide whether the physicists of the extraordinary generation that produced the modern quantum theory, in the late twenties, were intrinsically more gifted than our present generation or whether they simply had the good fortune to be at the height of their creative powers (for physicists, with some notable exceptions, this lies between the ages of twenty-five and thirty-five at a time when there was a state of acute and total crisis in physics-a crisis brought about by the fact that existing
physics simply did not account for what was known about the atom. In brief, if our generation had been alive at that time, could we have invented the quantum theory?

It is a question that will never be answered. But there is no doubt that the group of men who did invent the theory was absolutely remarkable. Aside from Max Planck and Einstein (it was Planck who invented the notion of the quantum-the idea that energy was always emitted and absorbed in distinct units, or quanta, and not continuously, like water flowing from a tap-and it was Einstein who pointed out how Planck's idea could be extended and used to explain a variety of mysteries about matter and radiation that physicists were contending with), who did their important work before 1925, the list includes Niels Bohr, who conceived the theory that the orbits of electrons around atoms were quantized (electrons, according to the Bohr theory, can move only in special elliptical paths"Bohr orbits"-around the nucleus and not in any path, as the older physics would have predicted) ; Prince Louis de Broglie, a French aristocrat whe conjectured in his doctoral thesis that both light and matter had particle and wave aspects; Werner Heisenberg, who made the first breakthrough that led to the mathematical formulation of the quantum theory, from which the Bohr orbits can be derived, and whose "uncertainty relations" set the limitations on measurements of atorr ic systems; P. A. M. Dirac, who made basic contributions to the mathematics of the theory and who showed how it could be reconciled with Einstein's theory of relativity; Wolfgang F'auli, whose "exclusion principle" led to an explanation of why there is a periodic table of chemical elements; Max Born and Pascual Jorcian, who contributed to the interpretation of the theory; and, finally, Erwin Schrödinger, whose Schrödinger Equation is in many ways the basic equation of the quantum theory, and is to the new physics what Newton's
laws of motion were to the physics that went before it.
While Heisenberg, Pauli, and Dirac were all in their early twenties when they did their work, de Broglie and Bohr were older, as was Schrodinger, who was born in Vienna in $188 \%$. In 1926 , he published the paper in which his equation was formulated. Oddly, just a few years before, he had decided to give up physics altogether for philosophy. Philipp Frank, who had been a classmate of Schrödinger's in Vienna, once told me that just before Schrödinger began his work on the quantum theory he had been working on a psychological theory of color perception. Schrödinger himself writes in the preface of his last book, My View of the World (Cambridge), published posthumously (he died in 1961), "In 1918, when I was thirty-cne, I had good reason to expect a chair of theoretical piysics at Czernowitz. . . . I was prepared to do a good job lecturing on theoretical physics . . . but for the rest, to devote myself to philosophy, being deeply imbued at the time with the writings of Spinoza, Schopenhauer, Ernst Mach, Richard Semon, and Richard Avenarius. Miy guardian angel intervened: Czernowitz soon no longer belonged to Austria. So nothing came of it. I had to stick to theoretical physics, and, to my astonishment, something occasionally emerged from it."

The early quantun theoreticians were a small group, mainly Europeans, who knew each other well. There was among them a sense of collaborating on one of the most important discoveries in the history of physics. In his Science and the Common Understanding, Robert Oppenheimer wrote, "Our und standing of atomic physics, of what we call the quantur. theory of atomic systems, had its origins at the turn of the century and its great synthesis and resolutions in the nineteen-tventies. It was a heroic time. It was not the doing of any one man; it involved the collaboration of scores of scientists from many different lands, though from first to last the deeply creative
anci subtle and critical spirit of Niels Bohr guided, restrained, deepened, and finally transmuted the enterprise. It was a period of patient work in the laboratory, of crucial experiments and daring action, of many false starts and many untenable conjectures. It was a time of earnest correspondence and hurried conjectures, of debate, criticism, and brilliant mathematical improvisation. For those who participated, it was a time of creation; there was terror as well as exaltation in their new insight. It will probably not be recorded very completely as history. As history, its recreation would call for an art as high as the story of Oedipus or the story of Cromwell, yet in a realm of action so remote from our common experience that it is unlikely to be known to any poct or any historian."

However, as the outlines of the theory became clearer, a sharp division of opinion arose as to the ultimate significance of it. Indeed, de Broglie, Einstein, and Schrödinger came to feel that even though the theory illuminated vast stretches of physics and chemistry ("All of chemistry and most of physics," Dirac wrote), there was fundamentally something unsatisfactory about it. The basic problem that troubled them was that the theory abandons causation of the kind that had been the goal of the classical physics of Newton and his successors: In the quantum theory, one cannot ask what one single electron in a single atom will do at a given time; the theory only describes the most probable behavior of an electron in a large collection of electrons. The theory is fundamentally statistical and deais solely with probabilities. The Schrödinger Equation enables one to work out the mathematical expressions for these probabilities and to determine how the probabilities will change in time, but according to the accepted interpretation it does not provide a step-by-step description of the motion of, say, a single electron in an atom, in the way that Newtonian mechanics proiects the trajectory of a planet moving around the sun.

To most physicists, these limitations are a fundamental limitation, in principle, on the typ: of information that can be gathered by carrying out measurements of atomic systems. These limitations, which were first analyzed by Heisenberg and Bohr, are summarized in the Heisenberg uncertainty relations, which state, generally speaking, that the very process of making most measurements of an atomic system disturbs the system's behavior so greatly that it is put into a state qualitatively different from the one it was in before the measurement. (For example, to measure the position of an electron in an atom, one must illuminate the electron with light of very short wave length. This light carries so much momentum that the process of illuminating the electron knocks it clear out of the atom, so a second measurement of the position of the electron in the atom is impossible. "We rurder to dissect," as Wordsworth has said.) The observer-or, really, his measuring apparatus-has an essential influence on the observed. The physicists who have objected to the quantum theory feel that this limitation indicates the incompleteness of the theory and that there must exist a deeper explanation that would yield the same universal agreement with experiment that the quantum theory does but that would allow a completely deterministic description of atomic events. Naturally, the burden of finding such a theory rests upon those who feel that it must exist; so far, despite the repeated efforts of people like de Broglie, Einstein, and Schrödinger, no such theory has been forthcoming.
Schrödinger, who was a brilliant writer of both scientific texts and popular scientific essays, summarized his distaste for the quantum theory in an essay entitled Are There Quantum Jumps? published in 1952: "I nave been trying to produce a mood that makes one wonder what parts of contemporary science will still be of interest to more than historians two thousand years hence. There have been ingenious constructs of the human mind that gave an
exceedingly accurate description of observed facts and have yet lost all interest except to historians. I am thinhines of the theory of epicycles. [This theory was used, especially ly the Alevandrian astronomer Ptolemy, to account for the extremely complicated planetary motions that had been observed: it postulated that they were compounded of innumerabie smple circular motions. Reduced to the simplest terms, a planet was presumed to move in a small cincle around a point that moved in a large circle around the earth. The theory was seplaced by the assumption. conceived by Copernicus and Kepler, that the planets more in cllipucal orbits around the sun.] I confess to the heretical view that their modern counterpart in physical theorv are the quantum jumps." In his intioduction to My r'u'w of the World, Schrödinger puts his belinf even more strongly: "There is one complaint which I shall not escape. Not a word is cand here of acausality, wave mechanis , indeterminacy relations, complementarity, an expanding universe, continuous creation, etc. Why doesn't he talk about what he knows instead of trespassing on the professional philosopher's preserves? Ne sutor supra crepidam. On this I can cheerfully justify myself: because I do not thank that these things have as much connection as is currently supposed with a philosophical view of the world." There is a story that after Schrodinger lectured, in the twenties, at the Institute of Theoretteal Physics, in Copenhagen, in which Bohr was teathing, on the implications of his equation, a vigorous de 'hate toc' place, in the course of which Schrodinger remarked that if he had hnown that the whole thing would be taken so seriously be never would have invented it in the first plac..
Schodinger was too great a scientist not to recognize the signifuance of the all but universal success of the quantum theory-it accounts not only for "all of chemistry and must of plysics" but even for astronomy; it can be used, for example, to make very precise computations of the energy
generated in the nuclear reactions that go on in the sun and other stars. Indeed, Schrödinger's popular masterpiece, What Is Life? deals with the impact of quantum ideas on biology and above all on the molecular processes that underlie the laws of heredity. The two striking features of the hereditary mechanism are its stability and its changeability-the existence of mutations, which allow for the evolution of a biological species. The characteristics that are inherited by a child from its mother and father are all contained in several large organic molecules-the genes. Geres are maintained at a fairly high temperature, $9^{\circ}{ }^{\circ} \mathrm{F}$., in the human body, which means that they are subject to constant thermal agitation. The question is how does this molecule retain its identity through generation after generation. Schrodinger states the problem brilliantly: "Let me throw the truly amazing situation into relief once again. Several members of the Habsburg dynasty have a peculiar disfigurement of the lower lip ('Habsburger Lippe'). Its inheritance has been studied carefully and published, complete with historical oortraits, by the Impcrial Academy of Vienna, under the auspices of the family. .. Fixing our attention on the portraits of a member of the family in the sixteenth century and of his descendant, living in the nineteenth, we may safely assume that the material gene structure responsible for the abnormal feature has been carried on from generation to generation through the centuries, faithfully reproduced at every one of the not very numerous cell divisions that lie between. $\ldots$ The gene has been kept at a temperature around $98^{\circ} \mathrm{F}$. dising all that time. How are we to understand that it has remained unperturbed by the disordering tendency of the heat motion for centuries?"
According to the quantum theory, the stability of any chemical molecule has a natural explanation. The molecule is in a definite energy state. To go from one state to another the nolecule must absorb just the right amount of
energy. If too little energy is supplied, the molecule will not make the transition. This situation differs completely from that envisaged by classics! physics, in which the change of state can $h=$ achiesed by absorbing any energy. It ran be shown that the thermal agitations that go on in the human body do not in general supply enough energy to cause such a ransition, but mutations can take place in those rare thirmal processes in which enough energy is available to alter the gene.

What Is Life? was published in 1944. Since then the field of molecular biology has become one of the most active and exciting in all science. A good deal of what Schrödinger said is now dated. But he iook has had an enormous influence on physicists and brologists in that it hints how the two disciplines join together at their base. Schrödinger, who received the Nobel Prize jointly with Dirac, in :933, succeeded Max Planck at the University of Berlin in 1927 . When Hitler came to power, Schrödinger, although not a Jew, was deeply affected by the political climate. Philirp Frank has told me that Schrödinger attempted to intervenc in a Storm Trooper raid on a Jewish ghetto and would have been beaten to death if one of the troopers, who had studied physics, had not recognized him as Germany's most recent Nobel Laureate and persuaded his colleagues oo let him go. Shortly afterward, Schrödinger went to England, then back to Austria, then to Belgium, when Austria fell, and finally to the Dublin Institute for Advanced Studies, where he aemained until he returned io Vienna, in 1956 . By the end of his life, he must have mastered as much general cuiture-scientific and non-scientific-as is is possible for any single person to absorb in this age of technical specialization. He read widely in several languages, and wrote percept'vely about the relation between science and the humanities and about Greek science, in which he was particularly interested. He even wrote poetry, which, I am told, was extremely romantic.
(The pictures of Schrödinger as a young man give him a Byronic look.) What kind of personal metaphysics would such a man derive from his reading and experience? In My View of the World, he leaves a partial answer.

My Vicw of the World consists of two long essays-one written in 1925 , just before the discovery of the Schrödinger Equation, and one written in 1960, just before his death. In both essays he reveals himself as a mystic deeply influenced by the philosophy of the Vedas. In 1925 he writes. "This life of yours which you are living is not merely a piece of the entire existence, but is in a certain sense the whole; only this whole is not so constituted that it can be surveyed in one single glance. This, as we know, is what the Brahmins express in that sacred, mystic formula which is yet really so simple and so ciear: Tat tiam as:, this is you. Or, again, in such words as 'I am in the east and in the west. I am below and above, $I$ am this whole world,'" and in the later essay he returns to this theme. He does not attempt to derive or justify his convictions with scientific argument. In fact, as he stresses in his preface, he 'eels that moderr science, his own work included, is not relevart to the search for the underlying metaphysical and moral truths by which one lives. For him, they must be intuitively, almost mystically arrived at. He writes, "It is the vision of this truth (of which the individual is seldom conscious in his actions! which underlies all morally valuable activity. It lrings a man of nobility not only to risk his life for an end which he recognizes or believes to be good but-in rare cases-to lay it down in full serenity, even when there is no prospect of saving his own person. It guides the hand of the well-doer-this perhaps even more rarely-when, without hope of future reward, he gives to relieve a stranger's suifering what he cannot spare without suffering hisnself."

In 1960 . I had the chance to visit Schrödinger in Vienna. I was studying at the Boltzmann Institute for

Theoretical Physics, whose director, Walter Thirring, is the son of Hans Thirring, a distinguished Austrian physicist, also a classmate of Schrödinger. Schrödinger had been very ill and he rarely appeared at the Institute. But he enjoyed maintaining his contact with physics and the young physicists who were working under Walter Thirring. Thirring took a small group of us to visit Schrödinger. He lived in an old-fashioned Viennese apartment house, with a rickety elevator and dimly lit hallways. The Schrödinger living room-library was piled to the ceiling with books, and Schrödinger was in the process of writing the second of the two essays in My View of the World. Physically he was extremely frail, but his intellectual vigor was intact. He tuid us some of the lessons that modern scientists might learn from the Greeks. In particular, he stressed the recurrent theme of the writings of his later years-that modern science may be as far from revraling the underlying laws of the natural universe as was the science of ancient Greece. It was clear from watching and listening to him that the flame that illuminated his intellectual curiosity throughout his long life still burned brightly at the end of it.

# The Fundamental Idea of Wave Mechanics 

Eiwin Schrodinger

On passing through an optical instrument, such as a telescope or a camera lens, a ray of hght is subpected to a chaner in direction at cach refractung or reflecting sunface. The path of the rays can be constructed of we hnow the two simple laws which govern the changes in drection: the law of refraction wheh was discorered by Snchus a few hundred years ago. and the law of reflection with which Archmedes was familiar more than 2, e90 years ago. As a smple cxample. Fig. i shows a ray A-B which is subje -ed to refraction at each of the four boundary surfaces of two lenses an accordance woth the law of Sidellus.


Fig 1.
Fermat defined the total path of a ray of highe from a much more seneral point of view. Ia different meda. hight propagates wath different veloctes. and the radation path gues the apearmee as af the hight intest arrae at ats desernaton as quilly as powhe. (hacidentally. it is permissible hete to consider any twe pomts along the ray as the startug- and end-p.ments.) The least devaton from the path actually aken would mean a delay. Thes is the tamous Fermat pmople of the horos lyght tme. which in a narvellous mamer determmes the enure fate of a ay of heght $b$, a smgle seatement and aiso
 suddenly at modratual surface. but gadata from phate to phace. The at-
 pencerates moto tt from wutside, the more bowly it pogresses an an me erasmgly denser an Although the ditionaces in the specd of propagaton ate
infinitesimal, Fermat's prenciple an these carcumstances demands that the light ray should curve carthward (eee Fig. 2), so that it remams a hetle longer in the higher "faster" layers and reaches ats destmation more quickly than by the shotier straight path (broken line m the figure; disregard the square,


Fig. 2.
WWW'W' for the time benig). I think, hardly any of you will have faled to obse, ve that the sun when it as deep on the horizon appears to be not circular but flatrened: its vertical diameter looks to be shorecned. This is a result of the cl . wure of the rays

According to the wave theory of light, the light rays, strictly speaking, have only fictitious significance. They are not the physical paths of some partucles of hight, but are a mathematical device, the so-called orthogonal erajectories or wave surfaces, imaginary gunde lines as :t were, which pomt in the direction normal to the wave surface in which the latter advances (cf. Fig. 3 whicl: shows the simplest case of concentric spherical wave surfaces ai arcordingly rectulinear rays, whereas Fig. 4 tllustrates the case of curved


Fig. 3.


Flg. 4
rays). It is stirpismg that a general primciple as mportant as Fermat's relates direetly to these mathematical gude heres, and not to the wave surfaces, and one mught be melmed for this reason to consider it a mere mathematical curosity: Far from it. It becomes properly understandable only from the pout of vew of wave theory and ceases to be a devine miracle. From the wate pome of vew, the so-called cur vature of the hight ray is far more readly understandable as a surerving of the wave surfice. which must obviously occur when nerghbourng parts of a wave sarfface advance at different speeds, me exactly the same maner as a company of soldiers marchung forward will carey out the order " right melme" be the men taking steps of varymg lengths, the right-wing man the smallest, and the left-wing man the longest. In atmosphleac refraction of rediaton for example (Fig. 2) the section of wave surfice WW must necessarily swerve to the right towards W WW because its left half is located in shghtly higher, thimer air and thus advances more rapdly than the reght part at lower point. (In passing. i wish to refer to one ponit at which the Sne' 'us' vew fals. A horizontally c mutted hight ray should reman horizontal because the refraction mdex does not vary in the horizont.l diriction. In truth, a horizontal ray curves more strongly than any other, which is an obvous consequence of the theory of a swerving wave front.) On detaiced exammaton the Fermat principle is found to be completely: tantarnemen to the trivial and obvous statement that-given local distribution of hight $x$, octues-the wave frone must swerve a the manner indicated. I comot prove this here, but shail attempt to make ot plausibi. I would agam asn you th usualize a rank of soiders marching forward. To consure chat the lime remams dressed. let the men be comected bey a lone rod whech each huids firmly m has hand. No orders as io direction are givent the only order is: let each man march or run as fist as he can. If the mature of the ground varies siowly from place to place, it will be now the right wing, now the left in + advances more quickly, and changes ma drectoin will occur spontaneously. After some tume has elapsed, it will be sech ther the entere path ravelled is not rectlincar, but somehow curved. That this curved path is exactly that by which the destmatmin atamed at any monent could be attamed me rapully secordung to the neture of rle terram, is at least quite plausble, suce each of the inen ded his best. It will also be seen that the swervang al © occurs meariably in the direction $m$ whech the terrain is worse, s.) that to wiit one to look in the end as if the men had intentionally "b:passedn a place where they would advance slow!e.

F: Fermat proneple thus appears to be the trivial quinte wemec of the wave
theory. It was therefore a memorable occasion when Hamilton made the discovery that the true movement of mass points in a field of forces (e.g. of a planet on its orbit around the sun or of a stone thrown in the gravitational field of the earth) is also governed by a very simular general principle, which carres and has made famous the name of its discoverer sunce then. Admittedly, the Hamilton principle docs not say exactly that the mass point chooses the quickest way, but it does say something so sumular - the ana:ogy with the principle of the shortest travelling tume of hight is so close, that one was faced with a puzzle. It secmed as if Nature had realized one and the same lave twice by entircly differcut means: first in the case of light, by means of a fairly obvious play of rays: and again in the case of the mass points, which was anything but obvious, unless somehow wave nature were to be attributed to them also. And this, it seemed impossible to do. Because the «mass points» on which the laws of mechanics $h$ :d really been confirmed experimentally at that tume were only the large, visibie, somatimes very large bodies, the planct". for which a thing like "wave nature" appeared to be out of the question.
The snallest, elementary components of matter which we today, much more specifically, call «mass points", were purcly hyporhetical at the tuinc. It was only after the discovery of radioactivity that constant refinements of methods of measure:a 1 ent permitted the propertics of these partucles to be studied in detall, and now permit the paths of such particles to be photographed and to be measured very exactly (stercophotogrammetrically) by the brilliant method of C.T.R. Wilson. As far as the measurements extend they confirm that the same mechameal laws are vald for partucles as for large bodies, plancts, etc. However, it was found that neither the molecule nor the individual atom c.in be considered as the "ultumate component". but even the atom is a system of highly complex structurc. Images are formed in our minds of the structure of atoms consisting of particles, images which secm to have a certain similarity with the planctary system. It was only natural that the attempt should at first be made to consider as valid the same laws of motion that had proved thenselves so amazingly satisfactory on a large scale. In other words, Hamilton's mechanics, which, as I sald above, culminates in the Hamilton frimciple, were appled also to the "inner life" of the arom. That there is a very close analogy between Hamulton's principle and 「ermat's optical principle had meanwhule become all but forgotten. If it was remembered, it was considered to te nothing more than a currous trait of the mathernatical theory.

Now, it is very difficult, without further gong into detals, to convey a proper conception of the success or falure of these classical-mechanical 1 m ages of the atom. On the one hand, Hamilton's principle in particular proved to be the mose fathful and reliable gude, which was smply mdispensable; on the other hand one had to suffer, to do justice to the facts, the rough mterference of entirely new incomprehensible postulates, of the so-called quantum conditons and quantum postulates. Strident disharmony in the symphony of class:cal mechancs-yet strangely fammar-played as it were on the sinie motrument. In mathematical terms we can formulate this as follows: whereas the Hamilton primciple merely postulates that a given integral must be a minmum, wthout the numerical value of the minimum berng established by this postulare, it is now demanded that the numerical value of the mimimum should be aestricted to integral multiples of a universal natural constant, Planck's quantum of action. Thisincidentally. The situation was fairly desperate. Had the old mechanics falled completely, it would not have been so bad. The way would then have been free to the development of a new system of mechanics. As it was, one was faced with the difficuit task of saving the soul of the old system, whose mspiration clearly held sway in this microcosm, while at the same time flattering it as it were meno accepting the quantum condtions not as gross mterference but as issuing from its own imnermost essence.
The way out lay just in the possibility, already indicated above, of attributing to the Hamulton principle, also, the operation of a wave mechansm on which the point-mechanical processes ure essentially based, just as one had long become accustoried to dong in the case of phenomena relating to light and of the Fermat principle which governs them. Admuttedly, the mdividual path of a nass point loses its proper physical signficance and becomes as fictitious as the individual solated rajo of light. The essence of the theory, the mmimum principle, however, remains not only intact, but reveals its true and smimple meaning only under the wave-like aspect, as already explamed. Strictly speaking, the new theory is mact not new, it is a completely organic development, one might almost be tempted to say a more claborate exposition, of the old theory.

How was it then that this new more" elaborate "exposition ied to notably different results; what cnabled it, when applied to the atom, to obvate difficulties which the old theory could not solve? What enabled it to render gioss interference acceptable or cven to make it its own?
A, gain, these matters can best be illustrated by analogy with eptics. Quite
properly, indeed, I previously called the Fermat principle the quintessence of the wave theory of light: nevertheless, it cannot render dispensible a more exact study of the wave process ttself. The so-called refraction and miterference phenumena of light can only be understood if we trace the wave process in detail because what natters is not only the eventual destmation of the wave, but also whether at a given moment it arrives there with a wave peak or a wave trough. In the der, coarser experimental arrangements, these phenomena occurred as small detalls only and escaped observation. Once they were noticed and were interpreted correctly, by means of waves, it was easy to devise experments in which the wave nature of light finds expression not only in small detals, but on a very la ge scale in the entire character of the phenomenon.
Allow nee to illustrate this by two examples, first, the example of an optical insirument, such as telescope, microscope, etc. The object is to obtain a sharp image, i.e. it is desired that all rays issuing from a point should be reunited in a point, the so-called focus (cf. Fig. sa). It was at first believed that it was only geometrical-optical difficulties which prevented this: they are indeed considerable. Later it was found that even in the best designed instri-

a


Fig. 5 .
ments focussung of the rays was considerably inferior than would be expected if each ray exactly obeyed the Fermat principle mdependently of the neighbourmg rays. The hght which issues from a point and is received by the mstrument is reunted teliand the mstrument not in a single point any more, but is distributed over a small circular area, a so-called diffraction disc, which, otherwise, is in most cases a carcle only because the apertures and lens contours are generally circular. For, the cause of the phenomenon which we call diffraction is that not all the spherical waves issung from the object point can be accommodated by the instrunacnt. The lens edges and any apertures merely cut out a part of the wäve surfaces (cf. Fig. sb) and-if you will permit me to use a more suggestive expression-the mjured margins resist rigid unification in a ponit and produce the somewhat blurred or vague mage. The degree of blurring is closely associated with the wavelength of the light and is completely mevitable becaise of this decp-seated theoretical relationship. Hardly noticed at first, it governs and restricts the performance cf the modern microscope which has mastered ail , her errors of reproducton. The mages obtained of structures not mucii warser or even still fincr than the wavelengths of hight are only remotely or not at all sinular to the oniginal.
A second, even smpler example is the shadow of an opaque object cast on a screen by a small point light source. In order to coistruct the shape of the shadow, each light ray must be traced ald it must be established whether or not the opaque object prevents it from reaching the screcn. The margin of the shadow is formed by those light rays which only just brush past the edge of the body. Experience has shown that the shadow.margen is too absolutcly sharp even with a poin-shaped light source and a sharply defined shadow-casting object. The reason for this is the same as in the first example. The wave front is as it were bisected by the body (cf. Fig. 6) and the traces of this mjury result in biurring of the margin of the shadow which would be meomprehenstble if the individual light rays were independent entrtes advancing mdependently of one another without reference to ther neighbours.
This phenomenon - which is also called diffraction-is not as a rule very noticeable with large bodics. But if the shadow-casting body is very small at least in one dinension, diffraction finds expression firstly in that no proper shadow is formed at all, and secondly - much more strikungly - in that the small body its iff becomes as it were its own source of 'ght and radiates hght in all directions (preferentaliy to be sure, at emall angles relative to the inci-


Fig. 6.
dent light). All of you are undoubtedly fannlar with the so-called "motes of dust", ma a light bea: in falling into a dark room. Fine blades or grass and spiders' webs on the crest of a hill with the sun bechund it, or the eirant locks of harr of a man standing with the sun behind cften light "p ine stenotisly by diffracted light. and the visibility of smoke and mist is besed on 1t. It comes not really from the body itsclf, but from its mmednate surroundings, an arca in which it causes considerable meerference with the meldent wave fronts. It is interesting, and mportant for what follows, to obscrve that the area of interference always and ine every direction has at least the extent of onc or a few wavelengths, no matter how small the disturbing partecle may be. Once again, therefore, we observe a close relationship between the phenomenon of diffraction and wavelength. This is perhaps best illustrated by reference to another wave process, i.e. sound. Because of the much greater wavelength. which is of the order of centmetres and metres, shadow formatis, n recedes in the case of sound, and diffraction plays a majer, and pracucally y mportani, part: we can cassly hear a man callung fron.a behund a high wall or around the corner of a solid house, even if we camor see inm.
Let us return from optics to mechanics and explore the analogy to its fu!lest extent. In optics the old system of mechanics correspends to medlec-
tually operating with isolated mutually mdependent light rays. The new undulatory mechames corresponds to the wave theory of light. What is gained by cha.gng from the old vich to the new is that the diffractom phenomena can be aecommodated or, better expressed. what is ganed is sometheng that is strectly amalogous to the diffraction phenomena of light and wheh on the whole must be very ummportant, otherwise the old vew of mechanics would not have given full stasfacten so komg. It ss, however, casy to surinse that the neglected phenomenon may in some circumstances make itself very much feit, will enterely dommate the aciazacal procers, and will ace the oid system with msoluble roddles, if the entie mechunceal
 play the same pret me mechancal processes as that played by the light waves in optical processes.
This is the reason why in these minute systems, the atems, the old vew was bound to fanl, which though remaining intact as a close approximation for gros mechanical processes, bur is no longer adequate for the delicate interplay marcas of the order of magntude of one or a few waveleng:iss. It was astounding to observe the manacr in which all those strange addtomal requrements developed spont.menewsly from the new undulatory view, whercas they had to be foreed upon the old vew to adapt them to the mer life of the atom and to provide some explanation of the observed facts.
Thus, the salient pome of th: whole matet is that the dameters of the atom sand the wavelength of the hypothectical maturral waves are of approximately the same order of magminde. And now you are bound to ask whethor it must be considered mere chance that in our contunted analysis of the structure of matter we should come upon the order of magntude of the wavelengeth at this of all points, or whether this is to solite extent comprehensible. Further, you may ask, how we know that this is so, sunce the material waves are an enturely new requirement of thas theore, unknown anywhere else. Or is it simply that this is an assumption whach had to be madc?
The agreement between the orders of magntude is no mere chance, nor is any special a,smmpton abou: it neces:ary; it follows autom,atce, ally from the theory in the following remarkable manner. That the heavy mudew: of the atom is very mueh smaller than the atom and may therefore be considcred as a pons. centre of attraction in the argument which follows may be considered as experimentally established by the experments on the scattermg
of alpha rays done by Rutherford and Chadwick. Instead of the clectrons we metroduce hypothetical waves, whose wavelengths are left entirely open, because we knew nothing about them yet. This leaves a letter, say as mdicating a stll minnown figure, m our calculation. We are, however, used to this in such calculamens and it does not prevent us from calculateng that the nucleus of the atom must produce a kind of diffaction phenomenon in these waves, smimilarly as a mumute dust partucle does in light waves. Analogous'y, it follows that there is a close relationslup between the extent of the arca of metefference with which the nucleus surrounds itself and the wavelengeth, and that the two are of the same order of magmete. wi. ... this is, we have had to leave open; but the most mportart step now t. 3 , is: we identify the area of interference, the diffraction halo, , wirin, we atom; ued assert that the atown in reality is merely the diffraction phenomenon of an elactron ימave captured as it were by the muclews of the atom. It is no longer a matter of chance that the size of the atom and the wavel...gtl are of the same order of magmtude: it is a matier of course. We know the numerical value of nether, because we still have in our calculation the one unknown constant, which we called a. There are two possible ways of determimung it, which provide a mutual check on one another. First, we can so select it that the manfestations of life of the atom, above all the spectrum hues cmiteded, come out correctly quantitatively; these can after all be :ncasured very accurately: Sccondly, we can select a m a mamer such that the diffractoon halo acquires the size required for the atom. These two determmations of a (of whith the second is adnaittedly far more imprecise because «size of the atomn is no clearly defined terni) ar in complete agrecment weth one another. Thirdly, and lastly, we can remark that the constant remaining unknown, physically speaking, does not mact have the dimension of a length, but of an action, i.e. energy $\times$ enne. It is then an obvious step to substute for it the numerical value of Planck's unversal quantum of action, whech is accurately known from the laws of heat radation. It will be seen that we ceturn, with the full, now considerable accuracy, to the first (miost accurate) determination.
Quantita: :vely speaking, the theory therefore manages with a mminumn of new assumptions. It contains a single available constant, to whech a numerical value fambiar from the older quantum theory nu'se be given, first to attribute to the diffraction halos the right size so that they can be reascinably identific ' with the atoms, and secondly, to cvaluate quantitatively and correctly all the manifestations of life of the atom, the hight radated by it, the tonizaton energy, etc.

I have tred to place before you the fundamental idea of the wave theory of matter in the simplest possible form. I must admit now that in my desire not to tangle the ideas from the very beginning, I have panted the lily. Not as regards the high degree to which all sufficiently, carefully drawn conclusions are confirmed by experience, but with regard to the conceptual case and simplicity with which the conclusions are reached. I ann not speaking here of the mathematical difficulties, which always turn out to be trivial in the end, but of the conceptual difficulties. It is, oi course, casy to say that we turn from the concept of a curied path to a system of wave surfaces normal $t$ it. The wave surfaces, however, even if we consider only small parts of them (see Fig. 7) include at least a narrow biendle of possible curved paths,


Fig. 7.
to all of which they stand in the same relationship. Accordung :o the old view, but not according to the new, one of them in each concrete individual case is distinguished from all the others which are "only possible", as that "really travelled. We are faced here with the full force of the iogical oppostion between an
cither - or (point mechames)
and a
both - and (wave mechanics)

This would not matter much, if the old system were to be dropped entirely and to be replaced by the new. Unfortunately, this is not the case. From the
point of vew of wae me hames, the nfinute array of possible pont paths would be merely fictitions, none of them would have the prerogatere over the others of being that really travelled in an mdividual case. I have, however, already mentomed that we have yet really observed such indowdual partele paths in some cases. The wave theory can represent this, ether not at all or only very imperfectly. We find it confoundedly difficult to interpret the traces we ste as nothung more than narrow bundles of equally possible paths between which the wave surfaces establish cross-comections. Yet, these cross-comections are necessary for an understanding of the diffraction and interference phenomena which can be demonstrated for the sume partucle with the same plausibiltey-and that on a large scale. not just as a consequence of the theoretical ideas about the interior of the atom, wheh we mentioned earlier. Conditions are admittedly such that we can aiways manage to make do in each concrete individual case without the two different aspects leading to different expectations as to the result of certain experiments. We cannot, however, manage to make do with such old, famhlar, and secmingly indispensible terms as "real" or "only possible"; we are never in a position to say what really ts or what really happens, but we can only say: what will be observed in any concrete individual case. Will we have to be permancontly satisfied with this...: On principle, yes. On principle, there is nothing new in the postulate that me the end exact science should aim at nothing more than the desrription of what can really be observed. The queston is only whether from now on we shall have to refrain from tying description to a cicar hepothesis about the real nature of the world. There are many- who wish to pronounce such abdication even today. But I betieve that this means making things a hitede too casy for oneself.

I would define the present state of our knowledge as follows. The ray or the partecle path corresponds to a lengitudinal relationship of the propagation process (i.c. It the direction of propagation), the wave surface on the other hand to a transeresal relationship (2.e., normal to it). Both relatonships are without doubt real; one is proved by photographed particle paths, the other by interference experiments. To combinc both ma uniform system has proved impossible so far. Only in extreme cases does cither the transversal, shell-shaped or the radiai, longrtudinal relatonship predominate to such an extent that we think we can make do with the wave theory alone or with the particle theory alone.

## The Sentinel

Arthur C. Clarke

The next time you see the full moon high in the south, look carefully at its right-hand edge and let your eye travel upward along the curve of the disk. Round about two o'clock you will notice a small, dark oval: anyone with normal eyesight can find it quite easily. It is the great walled plain, one of the finest on the Moon, known as the Mare Crisium-the Sea of Crises. Three hundred miles in diameter, and almost completely surrounded by a ring of magnificent mountains, it had never been explored until we entered it in the late summer of 1996.

Our expedition was a large one. We had two heavy treighters which had flown our supplies and equipment from the main lunar base in the Mare Serenitatis, five hundred miles away. There were also three small rockets which were intended for short-range transport over regions which our surface vehicles couldn't cross. Luckily, most of the Mare Crisium is very flat. There are none of the great crevasses so common and so dangerous elsewhere, and very few craters or mountains of any size. As far as we could tell, our powerful caterpillar tractors would have no difficulty in taking us wherever we wished to go.
I was geologist-or selenologist, if you want to be pedantic-in charge of the group exploring the southern
region of the Mare. Wc had crossed a hundred miles of it in a week, skirting the foothills of the mountains along the shore of what was once the ancient sea, some thousand million years before. When life was beginning on Earth, it was already dying here. The waters were retreating down the flanks of those stupendous cliffs, retreating into the empty heart of the Moon. Over the land which we were crossing, the tideless ocean had once been half a mile deep, and now the only trace of moisture was the hoarfrost one could sometimes find in caves which the searing sunlight never penetrated.

We had begun our journey early in the slow lunar dawn, and still had almost a week of Earth-time before nightfall. Half a dozen times a day we would leave our vehicle and go outside in the space-suits to hunt for interesting minerals, or to place markers for the guidance of future travelers. It was an uneventful routine. There is nothing hazardous or evei particularly exciting about lunar exploration. We could live comfortably for a month in our pressurized tractors, and if :ve ran into trouble we could always radio for help and sit tight until one of the spaceships came to our rescue.

I said just now that there was nothing exciting about lunar exploration, but of course that isn't true. One could never grow tired of those incredible mountains, so much more rugget than the gentle hills of Earth. We never knew, as we rounded the capes and promontories of that vanished sea, what new splendors would be revealed to us. The whole southern curve of the Mare Crisium is a vast delta, where a score of rivers once found their way into the ocean, fed perhaps by the torrential rains that must have lashed the mountains in the brief volcanic age when the Moon was young. Each of these ancient valleys was an invitation, challenging us to climb into the unknown uplands beyond. But we had a hundred miles still to cover, and could only look longingly at the heights which others must scale.

We kept Earth-time aboard the tractor, and precisely at 22.00 hours the final radio message would be sent out to Base and we would close down for the day. Outside,
the rocks would still be burning beneath the almost vertical sun, but to us it was night until we awoke again eight hours later. Then one of us would prepare breakfast, there would be a great buzzing of electric razors, and someone would switch on the short-wave radio from Earth. Indeed, when the smell of frying sausages began to fill the cabin, it was sometimes hard to believe that we were not back on our own world-everytbing was so normal and homely, apart from the feeling of decreased weight and the unnatural slowness with which objects fell.

It was my turn to prepare breakfast in the comer of the main cabin that served as a galley. I can remember that moment quite vividly after all these years, for the radio had just played one of my $f_{z}$ vorite melodies, the old Welsh air, "David of the White Rock" Our driver was already outside in his space-suit, inspecting our caterpillar treads. My assistant, Louis Garmett, was up forward in the control position, making some belated entries in yesterday's log.
As I stood by the frying pan waiting, like any terrestrial housewife, for the sausages to brown, I let my gaze wander idly over the mountain walls which covered the whole of the southerr horizon, marciing out of sight to east and west below the curve of the Moon. They seemed only a mile or two from che tractor, but I knew that the nearest was twenty miles away. On the Moon, of course, there is no loss of detail with distance-none of that almost imperceptible haziness which softens and sometimes transfigures all far-off things on Earth.
Those mountains were ten thousand feet high, and they climbed steeply out of the plain as if ages ago some subterranean eruption had smashed them skyward through the molten crust. The base of even the nearest was hidden from sight by the steeply curving surface of the plain, for the Moon is a very little world, and from where I was standing the horizon was only twe miles away.
I lifted my eyes toward the peaks which no man had ever climbed, the peaks which, before the coming of
terrestrial life, had watched the retreating oceans sink sullenly into their graves, taking with them the hope and the morning promise of a world. The sunlight was beating against those ramparts with a glare that hurt the eyes, yet only a little way above them the stars were shining steadily in a sky blacker than a winter midnight on Earth.
I was turning away when my eye caught a metallic glitter high on the ridge of a great promontory thrusting out into the sea thirty miles to the west. It was a dimensionless point of light, as if a star had been clawed from the sky by one of those cruel peaks, and I imagined that some smooth rock surface was catching the sunlight and heliographing it straight into my eyes. Such things were not uncommon. When ths Moon is in her second quarter, observers on Earth can smnetimes see the great ranges in the Oceanus Procellarwn burning with a bluewhite iridescence as the cunlight fashes from their slopes and leaps again from world to world. But I was curious to know what kind of rock could be shining so brightly up there, and I climbed into the observation turret and swung our four-inch telescope round to the west.

I could see just enough to tantalize me. Clear and sharp in the field of vision, the mountain peaks seemed only half a mile away, but whatever was catching the suolight was still too small to be resolved. Yet it seemed to have an elusive symmetry, and the summit upon which it rested was curiously flat. I stared for a long time at that glittering enigma, straining my eyes into space, until presently a smell of buraing from the galley told me that our breakfast sausages had made their quarter-million mile journey in vain.
All that morning we argued our way across the Mare Crisium while the western mountains reared higher in the sky. Even when we were out prospecting in the spacesuits, the discussion would continue over the radio. It was absolutely certain, my companions argued, that there had never been any form of intelligent life on the Moon. The only living things that had ever existed there were a few primitive plants and their slightly less degenerate ancestors. I knew that as well as anyone, but there are
times when a scientist must not be afraid to make a fool of himself.
"Listen," I said at last, "I'm going up there, if only for my own peace of mind. That mountain's less than twelve thousand feet high-that's only two thousand under Earth gravity-and I can make the trip in twenty hours at the outside. I've always wanted to go up into those hills, anyway, and this gives me an excellent excuse."
"If you don't break your neck," said Garnett, "you'll be the laughing-stock of the expedition when we get back to Base. That mountain will probably be called Wilson's Folly from now on."
"I won't break my neck," I said firmly. "Who was the first man to climb Pico and Helicon?"
"But weren't you rather younger in those days?" asked Louis genily.
"That," I said with great dignity, "is as good a reason as any for going."

We went to bed early that night, after driving the tractor to within half a mile of the promontory. Garnett was coming with me in the morning; he was a good climber, and had often been with me on such exploits before. Our driver was orly too glad to be left in charge of the machine.

At first sight, those cliffs seemed completely unscaleable, but to anyone with a good head for heights, climbing is easy on a world where all veights are only a sixth of their normal value. The real danger in lunar mountaineering lies in overconfidence; a six-hundred-foot drop on the Moon can kill you just as thoroughly as a hundredfoot fall on Earth.

We made our first halt on a wide ledge about four thousand feet above the plain. Climbing had not been very difficult, but my limbs were stiff with the unaccustomed effort, and I was glad of the rest. We could still see the tractor as a tiny metal insect far down at the foot of the cliff, and we reported our progress to the driver before starting on the next ascent.

Inside our stits it was comfortably cool, for the refrigeration units were fighting the fierce sun and carrying
away the body-heat of our exertions. We seldom spoke to each other, except to pass climbing instructions and to discuss our best plan of ascent. I do not know what Garmett was thinking, probably that this was the craziest goose-chase he had ever embarked upon. I more than half agreed with him, but the joy of climbing, the knowledge that no man had ever gone this way before and the exhilaration of the steadily widening landscape gave me all the reward I needed.
I don't think I was particularly excited when I saw in front of us the wall of rock I had first inspected through the telescope from thirty miles away. It would level off about fifty feet above our heads, and there on the plateau would be the thing that had lured me over these barren wastes. It was, almost certainly, nothing more than a bculder splintered ages ago by a falling meteor, $\mathrm{a}^{-} \mathrm{d}$ with its cleavage planes still fresh and bright in this incorruptible, unchanging silence.
There were no hand-holds on the rock face, and we had to use a grapnel. My tired arms semed to gain new strength as I swung the three-pronged metal anchor round my head and sent it sailing up tc ward the stars. The first time it broke loose and came falling slowly back when we pulled the rope. On the third attempt, the prongs gripped firmly and our combined weights could not shift it.
Garnett looked at me anxiously. I could tell that he wanted to go first, but I smiled back at him through the glass of my helmet and shook miy head. Slowly, taking my time, I began the final ascent
Even with my space-suit, I weighed only forty pounds here, so I pulled myself up hand over hand without bothering to use my feet. At the rim I paused and waved to my companion, then I scrambled over the edge and stood upright, staring ahead of me.
You must understand that until this very moment I had been almost completely convinced that there could be nothing strange or unusual for me to find here. Almost, but not quite; it was that haunting doubt that had
driven me forward. Well, it was a doubt no longer, but the haunting had scarcely begun.

I was standing on a plateau perhaps a hundred feet across. It had once been smooth-too smooth to be nat-ural-but falling meteors had pitted and scored its surface through immeasurable eons. It had been leveled to support a glittering, roughly pyramidal structure, twice as high as a man, that was set in the rock like a gigantic, many-faceted jewel.

Probably no emotion at ali filled my mind in those first few seconds. Then I felt a great lifting of my heart, and a strange, inexpressible joy. For I loved the Moon, and now 1 knew that the creeping moss of Aristarchus and Eratosthenes was not the only life she had brought forth in her youth. The old, discredited dream of the first explorers was true. There had, after all, been a lunar civilizationand I was the first to find it. That I had come perhaps a hundred million years too late diu not distress me; it 'vas enough to have come at all.
My mind was beginning to function normally, to analyze and to ask questions. Was this a building, a shrineor something for which my language had no name? If a building, then why was it erected in so uniquely inaccessible a spot? I wondered if it might be a temple, and I could picture the adepts of some strange priesthood calling on their gods to preserve them as the life of the Moon ebbed with the dying oceans, aud calling on their gods in vain.
I took a dozen steps forvai if examine the thing more closely, but some sense cis caut.on kept me from going too near. I knew a little of archaeology, and tried to guess the cultural level of the civilization that must have smoothed this mountain and raised the glittering mirror surfaces that still dazzled my eycs.

The Egyptians could have done it, I thought, if their workmen had possessed whatevir strange materials these far more ancient architects had used. Because of the thing's smallness, it did not occur to me that I might be looking at the handiwo-k of a race more advanced than my own. The idea that the Moon had possessed intelli-
gence at all was still almost too tremendous to grasp, and my pride would not let me take the final, humiliating plunge.
And then I noticed sometaing that set the scalp crawling at the back of my neck-something so trivial and so innocent that many would never have noticed it at all. I have said that the plateau was scarred by meteors; it was also coated inches-deep with the cosmic dust that is always filtering down upon the surface of any world where there are no winds to disturb it. Yet the dust and the meteor scratches ended quite abruptly in a wide circle enclosing the little pyramid, as though on invisible wall was protecting it from the ravages of tius and the slow but ceaseless bombardment from space.

There was someone shouting in my earphones, and I realized that Garnett had been calling me for some time. I walked unsteadily to the edge of the cliff and signaled him to join me, not trusting myself to speak. Then I went back toward that circle in the dust. I picked up a fragment of splintered rock and tossed it gently toward the shining enigma. If the pebble had vanished at that invisible barrier I should not have been surprised, but it seemed to hit a smooth, hemispherical surface and slide gently to the ground.
I knew then that I was looking at nothing that could be matched in the antiquity of my own race. This was not a building, but a machine, protecting itself with forces that had challenged Eternity. Those forces, whatever they might be, were still operating, and perhaps I had already come too close. I thought of all the radiations man had trapped and tamed in the past century. For all I knew, I might be as irrevocably doomed as if I had stepped into the deadly, silent aura of an unshielded atemic pile.
I remember turning then toward Garnett, who had joined me and was now standing motionless at my side. He seemed quite oblivious to me, so I did not disturb him but walked to the edge of the cliff in an effort to marshal my thoughts. There below me lay the Mare CrisiuriSea of Crises, indeed-strange and weird to most men,
bus reassuringly familiar to me. I lifted my eyes toward the crescent Earth, lying in her cradle of stars, and I wondered what her clouds had covered when these unknown builders had finished their work. Was it the steaming jungle of the Carboniferous, the bleak shoreline over which the first amphibians must crawl to conquer the land -or, earlier still, the long loneliness before the coming of life?

Do not ask me why I did not guess the truth soonerthe truth that seems so obvious now. In the first excitement of my discovery, I had assumed without question that this crystalline apparition had been built by some race belonging to the Mool.'s remote past, but suddenly, and with overwhelming force, the belief came to me that it was as alien to the Moon as I myself.

In twenty years we had found no trace of life but a few degenerate plants. No lunar civilization, whatever its doom, could have left but a single token of its existence.

I looked at the shining pyramid again, and the more remote it seemed frum anything that had to do with the Moon. And suddenly I felt myself shaking with a foolish, hysterical laughter, brought on by excitement and overexertion: for I had imagined that the little pyramid was speaking to me and was saying: "Sorry, I'm a stranger here myself."
It has taken us twenty years to crack that invisible shield and to reach the machine inside those crystal walis. What we could not understand, we broke at last with the savage might of atomic power and now I have seen he fragments of the lovely, glittering thing I found up there on the mountain.
They are meaningless. The mechanisms-if indeed they are mechanisms-of the pyramid belong to a technology that lies far beyond our horizon, perhaps to the technology of para-physical forces.
The mystery haunts us all the more now that the other planets have been reached and we know that only Earth has ever been the home of intelligent life in our Universe. Nor could any lost civilization of our own world have built that inachine, for the thickness of the meteoric dust
on the plateau has enabled us to measure its age. It was set there upon its mountain before life had emerged frow the saas of Earth.

When our world was half its present age, something from the stars swept through the Solar System, left this token of its passage, and went again upon its way. Until we destroyed it, that machine was still fulfilling the purpose of its builders; and as to that purpose, here is my guess.
Nearly a huncired thousend million stars are turning in the circle of the Milky Way, and long ago other races on the worlds of other suns must have scaled and passed the heights that we have reached. Think of such civilizations, far back in time against the fading afterglow of Creation, masters of a universe so young that life as yet had come only to a handful of worlds. Theirs would have been a loneliness we cannot imagine, the lonelizes: of gods looking out across infinity and finding none to share their thouglits.
They must have searched the star-clusters as we have searched the planets. Everywhere there would be worlds, but they would be empty or peopled with crawling, mindless things. Such was our own Earth, the smoke of the great volcanoes still staining th. skies, when that first ship of the peoples of the dawn came sliding in from the abyss beyond Pluto. It passed the frozen outer worlds, knowing that life could play no part in their destinies. It camo to rest among the inner planets, warming themselves around the fire of the Sun and waiting for their stories to begin.

Those wanderers must have looked on Earth, circling safely in the narrow zone between fire and ice, and must have guessed that it was the favorite of the Sun's -hildren. Here, in the distant future, would be intelligence, but there were countless stars before them still, and thes might never come this way again.

So they left a sentinel, one of millions the have scattered throughout the Universe, watching over all worlds with the promise of life. It was a beacon that down the
ages has been patiently signaling the fact that no one had discovered it.

Perhaps you understand now why that crystal pyramia was set upon the Moon instead of on the Earth. Its bulders were not concerned with races still struggling up from savagery. They would be interested in our civilization only if we proved our fitness to survive-by crossing space and so escaping from the Earth, our cradle. That is the challenge that all intelligent races must meet, sooner or later. It is a double challenge, for it depends in turn upon the conquest of atomic energy and the last choice between life and death.

Once we had passed that crisis, it was only a matter of time before we found the pyramid and forced it open. Now its signals have ceased, and those whose duty it is will be turning their minds upon Earth. Perhaps they wish to help our infant civilization. But they must be very, very old, and the old are often insanely jealous of the young.
I can n $\epsilon$ ver look now at the Milky Way without wondering from which of those banked clouds of stars the emissaries are coming. If you will pardon $\leqslant\lrcorner$ commonplace a simile, we have set off the fire-alarm and have nothing to do but to wait.
I do not think we will have to wait for long.


Krystollos, by CalComp

# .. The Sea-Captain's Box 

## John L. Synge



Long ago there lived a retired sea-captain who liked to go to auctions where he bought all sorts of, eer things, much to the annoyance of his wife. One day he brought home a
box with strange hieroglyphics painted all over it and set it down in a place of honour on the table where he kept his trophies.
As far as could be seen, there was no way of opening the box. This aroused the curiosity of the sea-captain and he started carefully to scrape off the rust and grime with which the box was covered. To his great delight he found a small shaft or axle p:otruding from one side of the box, as shown in Fig. 1

He discovered that he could turn this shaft with a pair of pliers, but nothing seemed to happen when he did so. Certainly the dox did not open. 'Perhaps I haven't turned the shaft far enough,' he sais to himself, 'or perhaps I'm turning it the wrong way.'

He realized then that he had lost track of the amount by which he had turned the shaft, and rebuked himself severely for not keeping a log. He must be more systematic.

There was a tiny arrow on the end of the shaft, and when the shaft was turned so that this arrow was vertical, it would go no further to the left. That he called 'the zero position'. Then he set to work and fixed a knob on the end of the shaft with a pointer attached and a graduated scale running round the shaft so that he could take readings with the pointer when he turned the shaft (see Fig. 2). He marked off the scale in units, tenths of units and hundredths of units, but he could not draw any finer divisions.

He got out one of the old log books he had brought back from the sea and wrote the words 'Log of my box' at the top of a blank page. He ruled two columns very neatly and wrote at the head of the first column 'Date of observation' and at the head of the second column 'Reading of pointer'.

Then he turned the knob, looked at the calendar and the pointer, and made this entry:

Date of observation 3 March 1453, morning, cloudy, wind fresh S.E. by E .

## Reading of pointer

$2 \cdot 00$

There was an auction in the neighbourhood that day. The sea-captain came home from it in the evening and made another entry:

> 3 March I 453 , evening, fair, wind slight S.E. by S.
'We'll never reach port at this rate,' said the sea-captain to himself. 'Man the capstan!' Then he took the knob and turned the pointer to another position, which he noted in his log; but the box did not open. He turned the knob to various positions, noting them all, but still the box did not open.
By this time he was pretty disgusted and half resolved to throw the box away, but he was afraid his wife would laugh at him. He opened his clasp knife and attacked the box in a fury, but succeeded only in knocking off a few flakes of rust and breaking his knife. But he was excited to see that he had exposed a second shaft! He guickly went to work and fitted this shaft with a knob, pointer and graduated scale, so that it looked as in Fig. 3.

Then he turned over a fresh page in his $\log$ and ruled three columns. The first he headed as before 'Date of observation'. Then he hesitated. He must not get the two pointers mixed up - he must give them names - what would he call them? Castor and Pollux? Scylla and Charybdis? Port and starboard?
The sea-captain was a long time making up his mind. An unlucky name might send a good ship to the bottom on
her maiden voyage. He rejected for reasons of domestic peace the idea of naming the pointers aiter girl friends of his youth or even after Greck goddesses. Hic must choose names which would apply to his pointers only and to nothing else, and the only thing to do was to make up names. He finally decided on protus for the one he had discovered first and deutus for the one he had discovered second. The grammarians might not think much of these names, but the mixture of Greck and Latin sounds had a pleasant ring and should make them safe from confusion with anything else. So he now prepared three columns in his log like this:

## Date of observation protis deutus

The sea-captain's wife thought that he bought things at auctions merely to satiffy a childish yearning to possess curious pieces of rubbish, but that was rot the real reason. Actually, he was a very avaricious man, and he was convinced that sooner or later he would find a hoard of gold in some trunk or box picked up for next to nothing at an auction. That is the reason for the gleam in his eyes as he no'v grasps the two knobs on the box and prepares to turn them. Surely the box will open now!

But the box does not open. Instead, the sea-captain jumps back, shaking in every limb and with his hair on end. 'Shiver my timbers!' he crics. 'Tliere's a witch in the fo'c'sle!'

For, as he had tried to turn the knobs, there secined to be human hands inside the box resisting his efforts.
Then cautiously, as if afraid of getting burned, he stretches out kis hand to Protus and turns it gently. No resistance. But he draws back his hand in alarm. When he turned Protus, Deutus turned at the same time!

The sea-captain is no coward. In his time he has fought pirate, in the Levant and dived last from the bridge of his


Fig. i. The Box and the Shaft


Fig. 3. Protus and Deutus
ship sinking under him in the Bay of Biscay. But this is a different matter. There is magic in this box, and his conscience is troubled by his secret avarice for gold. Muttering a prayer and an incantation he picked up in an Eastern port, he takes up his pen in a shaky hand and with the other starts to manipulate Protus, writing down the figures as he does so. He is so excited that he forgets to record the date and the weather.

Here are his readings:

| PROTUS | DEUTUS |
| :---: | :---: |
| 0.00 | 0.00 |
| I.00 | 2.00 |
| 2.00 | 2.83 |
| 3.00 | 3.46 |
| 4.00 | 4.00 |

The box does not open, but he does not care. The lust for gold has been replaced by scientific curiosity. His sporting instinct is roused. 'Good old Protus!' he cries. 'You made a poor start but you're gaining. Two to one on Protus!'

He turns Protus further and gets these readings:

| PROTUS | DEUTUS |
| :---: | :---: |
| 5.00 | 4.47 |
| 6.00 | 4.90 |

'Protus wins!' roars the sea-captain, springing to his feet and nearly knocking the table over. His wife puts her head round the door. 'What's all the noise about?' Then she sneers. 'Still playing with that silly old box! A man of your age!

As the days pass, the sea-captain plays the game of Protus versus Deutus over and over again. Protus always makes a bad start and Protus always wins. It gets boring and he
begins to dream a little. He forgets that Protus and Deutus were names he mare up to distinguish one pointer from the other. They take on reality and he begins to think of them as two ships. Protus must be a heavy ship and Deutus a little sloop, very quick at the get-away but not able to hold the pace against the sail-spread of Protus.

But he pulls himself together. The lust for gold is now completely gone and the sea-captain starts to ask himself questions.

What is there really inside the box? He toys again with the idea that there may be a witch inside the bux, but reason tells him that witches don't behave like that. No witch would reproduce the same readings over and over again.

Since Deutus moves whenever you move Protus, there must be some connection between them. Ha! Blocks and tackle, that's what it must be! Very small ivory pulleyblocks and silk threads!
So the sea-captain stumps down to the dock and gets one of his friends to put his ship at his disposal. He tries all sorts of ways of connecting two windlasses so that their motions will reproduce tic motions of Protus and Deritus, but it will not work. He can easily make one windlass turn faster than the other, but he can never arrange matters so that one windlass makes a bad start and then overtakes the other. He returns home dejected. He is as wise as before about the contents of the mysterious box.

He reads over his log again and notices that he has always set Protus to an integer value. What would happen if he moved Protus through half a unit to $0 \cdot 50$ ? He is about to set Protus to $0 \cdot 50$ when his pride explodes in an oath. 'Sacred catfish!' he cries. 'What am I? A knob-twiddler and pointerreader? No. I am a man - a man endowed with the gift of reason. I shall think it out for myself!'

Then he ponders: 'When Protus goes from 0.00 to $\mathrm{I} \cdot 0$,

Deutus goes from 0.00 to 2.00 . That means that Deutus goes twice as fast as Protus, at least at the start of the race. So whe" Protus goes from ooo to 0.50 , Deutu: will go from 0.00 to 1.00 . That's obvious!' And he writes in the log

| PROTUS | DEUTUS |
| :---: | :---: |
| 0.50 | 1.00 (theoretical) |

By adding that word 'theoretical' the sea-captain shows himself to be a cautious, conscientious man, distinguishing what he has deduced from his 'theory' from what he observes directly. (A noble precedent, often sadly neglected, but much harder to follow than one might suppose at first sight!)
Was the sea-captain right? No. When he actually turned Protus, he had to record the readings as follows:

| protus |  |
| :---: | :---: |
| 0.50 | $\left.1.41 \begin{array}{c}\text { Deutus } \\ \text { (observed) }\end{array}\right)$ |

What do you think of the sea-captain's 'theory'? Not bad for 1453, but any modern schoolboy could tell him how to do better. He should have taken a sheet of squared paper and plotted a graph, Protus versus Deutus, marking first the points corresponding to the observations made and then drawing a smooth curve through them. Then he could have read off from the curve the 'theoretical' Deutus-rcading corresponding to the Protus-reading 0.50 . That might have saved him from making a fool of himself, provided that nature does not make jumps. That is an assumption always made in the absence of evidence to the contrary, and (as we shall see later) it might have been made here.
But a graph is not completely satisfactory. It is hard to tell another person in a letter the precise shape of the graph; you have to enclose a copy of the graph, and the making of copies of a graph is a nuisance unless you use photography.

A mathematical formula is always regarded as a much more convenient and satisfactory way of describing a natural law. The sea-captain had never heard of graphs or photography, but the other idea slowly evolved in his mind. Let us continue the story.

After thinking the matter over for several years, the seacaptain walked down to the pier one evening and stuck up a notice which read as follows:
deUtus is twice thi square root of protus
The people of the sea-port were of course very proud of the sea-captain, and they crowded checring round the notice-board. But there was one young man who did not cheer. He had just returned from the University of Pari, and took all scientific matters very seriously. This young man now pressed through the crowd until he reached the seacaptain, and, taking him by the lapel of his coat, said carnestly 'This notice, what does it mean?'

The sea-captain had been celebrating his discovery and was a little unsteady on his fect. He stared belligerentiy at the young man. 'Deutus is twice the square root of Protus,' he said. 'That's what it means. Can't you read?'
'And who is Dcutus?' said the young man. 'And who is this creature Protus that has a square root?'
'You don't know Protus and Deutus?' cried the sea-captain. 'Why, everyone knows Protus and Dcutus! Come up to my house and mect them over a glass of grog!'

So they went up to the sea-captain's house and he introduced the young man to Protus and Deutus. 'That's Protus on the left,' said he, 'and Dcutus on the right.' Then he leaned over and whispered confidentially in the young man's car: 'Protus carries more sail. but Deutus is quicker on the get-away!'

The young man looked at the sea-captain coldly. 'You mean,' he said, 'that Protus is a word which stands for the number indicated by the left-hand pointer and Deutus is a weid which stands for the number indicated by the righthand pointer. When you say that Protus is twice the square root of Deutus, you mean that one of these numbers is twice the square root of the other. In Paris we do not use words like Protus and Deutus for numbers. We use letters. We would write your result

$$
\mathrm{D}=2 \sqrt{\mathrm{P}}
$$

But is it really true?'
'Of course it's truc,' said the sea-captain, 'and we don't need all your French fancy-talk to prove it. Here, read my ship's log.' He opered the log and showed the young man the readings which you have read on p. 65 .
'Let us see,' said the young man. 'These things are not so obvious. Let us do a little calculation. The square root of zero is zero, and twice zero is zero, so the first line is right.'

He was about to put a check mark opposite the first line when the sea-captain roared 'Keep your hands off my log! Time enough to start writing when you find a mistake, which you won't. You can't teach a master mariner how to reckon!'

To proceed,' went on the young man, 'in the second line $P$ is one; the square root of one is one, and twice one is two. Quite correct.' He put out his hand to make a check mark, but withdrew it hastily.
'In the next line,' lie continued, ' $P$ is two. The square root of two is an irrational number and cannot be represented by a terminating decimal. The third line is wrong, in the sense that the law $D=2 \sqrt{P}$ is not satisfied by these numbers.'
The sea-captain was taken aback. What's that?' he said. 'An irrational number? I've sailed the seven seas, but never
did I meet up with an irrational number. Take your irrational numbers back where they come from, and don't try to teach me about Protus and Deutus!'
'I can put it another way,' said the young man. 'If you square both sides of your equation, and then interchange the sides o? the equation, you get

$$
4 \mathrm{P}=\mathrm{D}^{2}
$$

Now we shall put in the figures from the third line of your log. $P$ is 2.00 and $D=2.83$. Four times $P$ is therefore eight. Now we calculate the square of 2.83 ; it comes out to be 8.0089 . So you assert - or do you? - that

$$
8=8 \cdot 0089
$$

Surely you cannot mean that?'
The sea-captain scratched his head. 'That's not the way I figured it,' he said. 'Let's see now. Protus is 2 '00. What is the square root of 2.00 ? Why, it's 1.4142 . If you double that you get 2.8284 , and that is 2.83 to the acares: second decimal place. You can't trip me up, my boy. The law is satisfied all right.'
'Honest sir,' said the young man, smoothinr his Parisian hair-cut, 'do you tell me that

$$
2.8284=2.83 ?
$$

'Yes,' said the sea-captain stoutly, 'it is. Those numbers are equal to two decimal places.'
The young man jumped to his feet in anger. 'What a waste of my time!' he cried. 'It is a lying notice you have posted on the pier! Go down and add to it those words which will make it true.'
'And what words might those be?' asked the sea-captain suspiciously.
'Write that Deutus is twice the square root of Protus to two decimal places.'
'I will not,' replied the sea-captain stubbornly. 'Everybody knows that Protus and Deutus have only two decimal places and they don't need to be told. Kecp your irrational numbers and other French fiddle-faddle away from Protus and Deutus. Commonsense is envugh for them. But,' he added, 'you're a nice young fellow for a land-lubber, so sit ye down and we'll have a glass of groy together.'

So the young man sat down for a glass of grog and as the evening .o. on the two became more and more friendly and open-hearted with one another. Finally, speaking at once, they both broke out with the question: 'What is inside the box?'
The sea-captain told the young man how he had first thought that there was gold in the box, how then he had thought that there must be a witch, and now for the life of tim he could think of nothing but that there were two ships, Protus with a great sail-spread and Deutus smaller and quicker on the get-away. 'But,' he added, 'it bothers me how you could fit ships in such a little box, with a sea fur them to sail on and a wind to sail by. And how is it that they always sail the same, with Protus slow at first and Deutus quick on the get-away?'
Not having followed the sea, the young man paid little attention to the idea of the two ships. Then suddenly he stood up and stared at the box. He had now drunk several glasses of grog, su he stood with difficulty and leaned heavily on the table.
'I sec it,' he said. 'Yes, I see it!'
'What do you see?' asked the sca-captain. 'Protus with her tops'ls set?' And he too stared at the box.
'I see no ships,' said the young man, speaking slowly at first and then more and more rapidly. 'I see a world of
mathematics. I see two variable numbers, P and D , taking all values rational and irraticnal from zero to infinity. What fools we were to talk of two decimal places! The law is exact! $\mathrm{D}=2 \sqrt{\prime}^{\prime} \overline{\mathrm{P}}$. It is true for all values, rational and irrational. Protus is a number and Deutus is a number, and if you cannot measure them to more than two decimal places, that is your infirmity, not theirs. Go,' he cried to the sea-captain, 'go to the silversmith and make him contrive for you more cunning scales so that they may be read more accurately. I will go to Paris and procure some optic glasses wherewith to read the scales. Then you will sec that I am right. The law $\mathrm{D}=2 \sqrt{\mathrm{P}}$ is an exact mathematical law and you will verify it with readings that go to four or five or six decimal places.'
The sea-captain yawned. 'The silversmith is now abed,' he said, 'and with the wind now holding yor ^nnnot sail for France. It may be that this grog has been too much for your young stomach. Lie down on the couch therc and sleep it off.'
But before long the silversmith made the cunning scales and the young man brought the optic glasses from Paris; to the great surprise of the sea-captain, the young man was right - the law was satisfied to two more decimal places. Beyond that they could not go, although the young man married the sea-captain's daughter and worked with his father-in-law on the box for many yars. The sea-captain died thinking of Protus and Deutus r $3^{-i}, 1$, in a stiff breeze and bequeathed the box to the young man, who in course of time grew old and died too. The box was handed down from generation to generation as a farnily heirloom, and it was a point of honour with each generation to try to add a decimal place to the readings and see whether the law $\mathrm{D}=$ $2 \sqrt{\mathrm{P}}$ remained truc. Generation after generation found
that it did remain true, and finally the idea that there might be any doubt about it faded.
No one has ever succeeded in getting inside the box, and there is a mixed tradition as to what its contents are. Gold and witches were ruled out long ago, but still some members of the family see Protus and Deutus sailing with foaming wakes where others see two variable numbers capable of taking all positive values, rational and irrational.

An allegory must not be pushed too far, and so one hesitates to say what has happened to the sea-captain's box in these days of relativity and quantum mechanics. You might say that if you look very hard at Protus, your mere inspection disturbs him, and when you feel quite certain you have pinned him down to a definite reading Deutus is dancing all over the place. Or perhaps you might say that the two pointers do not move continuously but only in definite small jumps.

However, the whole picture is blurred by the discovery of a vast number of shafts, connected to one another by many complicated laws which the sea-captain would find it impossible to visualize in terms of nautical mancuvres.

But the cssential feature of the allegory remains - the unopened and unopenable box, and the question: 'What is really inside it?' Is it the world of mathematics, or can it be explained in terms of ships and shoes and sealing wax?

The answer must surely be a subjective matter; if you ask for an 'explanation', you cannot be satisfied unless the explanation you get rings a bell somewhere inside you. If you are a mathematician, you will respond to a mathematical explaration, but if you are not, then probably you will want an explanation which establishes analogies between the deep laws of nature and simple facts of ordinary life.

Up to the year igoo, roughly, such homely explanations
were available. It is true that hey never told the whole story (that inevitably involved mathematics), but they provided crusts for the teeth of the mind to bite on. The earth pursues its orbit round the sun on account of the pull of gravity; then think of an apple with a string through it which you whirl round your head. Light travels from the sun to the earth in ether-waves; then think of the ripples on the surface of a pond when you throw a stone into it.
Modern physics tends to decry 'explanations' of this sort not out of any malevolent desise to hide secrets, but because the simple analogies prove too deceptive and inadequate. In fact there are those who deny that physicists have the responsibility of giving explanations. This modern attitude has been expressed compactly by Professor Dirac: 'The only object of theoretical physics is to calculate results that can be compared with experiment, and it is quite unnecessary that any satisfying description of the whole course of the phenomena should be given.'
A new creed! Something to weigh and consider and contrast with the old creed implicit in science for centuries.

[^8]

The Snail, by CalComp

# Space Travel: Problems of Physics and Engineering 

## Harvard Project Physics Staff

Traveling through empty space. After centuries of gazing curiously at stars, moon, and planets from the sanctuary of his own planet with its blanket of lifeglving atmosphere, man nas learned to senc instruments to some of the nearer celestial objects; and he will no doubt soon try to make such a trip himself.

Starting with Johannes Kepler's Somnium, a flood of fanciful stories dealt with journeys to the moon, of ten in balloons equipped with all the luxuries of a modern ocean inner. These stories, of course, ignored something that had already been known for almost a century namely, that the earth's atmosphere must be only a thin snell of gas, held in place by gravity, and that beyond it must ize a nearly perfect vacuurn. In this vacuum of outer space there is no friction to retard the motion of a space ship, and this is a great advantage. But the forces of gravity from the sun and other bodies will not always tahe a vehicle where we want it to go, and we must be able to produce occasional bursts of thrust to change its course from time to time. Thus, quite aside from how we may launch such a space veliscle, we must equiv it with an engine that can exert a thrust in empty space.

The only way to obtain a thrust in a completely empty space 15 to use recoll forces like those actina on a qun when it fires a projectile. Indeed, Newton's third law says that to obtain a thrustind force on the space vehicle an equal ard opposite force must be exerted on something else, and $1 n$ empty space this "somethina else" can only be a matter that comes from the space vehicle itself, a matter that we are willing to leave behind us. only by throwing out a part of its own mass can a vehicle achaeve recoll forces to change its own velocity $\rightarrow$ ar least the velocity of the part of $i t$ taat remains intact.

A rocket is a recoil engine of this tvpe. It carries its own oxycer: (or other oxidizer) with which to burn its fuel, and the mass of the burned fuel and oxyden is ejected from the rear and left behind. The rocket is much iake a continuously firinq qun that constantly sprays out an enormous number of very tinv bullets. The recoll from these "bullets" is precisely the thrusting force on the bociy of the rochet.

Obviously there is a limit to the length of time that suca a process can continue, for the mass remaining in the space ship aets smaller all the time, except when the enqune is turnec off entirely. In thas chapter we w $=11$ examine thas limitation and see what it implies about space travel. To be definite, we shall usually soeak about rocket enaines, but it will be clear that what we have to say anplies to arn recoil endine whether it is run by chemacal power, nuclear power, or anv other source of power. All such enqines, to produce a thrust in empty space, must eject some of the mass that has been carries alona.
The rocket equation. It turns out, as we shall see, that the only property of a rocket engine that seriously limits its performance is the "exhaust velocity" of the burned fuel qases, $1 . e$. the velocity of the exhaust matezial as seen from the rocket. This exhaust velocity, which we denote by vex, is determined by the eneray released insicie the combustion chamber ard hence by the fuel (and oxidizer) used by the rocket. The same "kick" backward is quven to the exhaust-qas molecule whether or not the rocket $1 s$ already moving. Therefore, to a man staniirg on the rocket using a specific combustion process, the aases rushing out the exhaust will always appear to have the same velocity relative to the rocket, whatever the motion of the rocket itself with respect to another body.

Imagine you bre watching a rocket coastina along at constant velocity, far away from any other massive bociles. Suppose that the engine is ignited briefly an : ejects a small mass $m$ of burnes qases. The situation is sketched in F.g. 1, where we have lenoted the indtial mass and veloclty of the vehicie by $m$ and $v$ respectively. The velocity $v$ mav be measured witr respect to any (un accelerated) coordinate system, for example, another space shaj coasting alongside the first, or the sun-centered coordnate system that we commonly use to analyze the motions of the planets. (The actual value of vill cancel out of our final results. Why is this expected?) $\mathrm{K}^{\prime}$ - 3 r the hurst of power, the rocket will move away from us at velocity $v+i v$, having a mass $m$ " m; ard the "cloua" of exhaust gases, uf mass, $m$, will be moving away from as at a ve: waty erual to the exhaust velocity dimanashes by the forwar? velocity of the rocket, vex - v.

Since no externa. forces are acting on the system, we know that momentum must be corservec. In Fig. 1 (a), before the lurst of power, the momentum is mv; fight afterwarcs, in Fig. $1(b)$, it is (m-im)(v"+ v) - (im) $\left(v_{e x}-v\right)$. Thise momenta must be the same:

$$
(m-i m)(v+i v)-(c m)\left(v_{e x}-v\right)=m v
$$

Multiplying out the terms on the left-hand inde, we find that all terms containing $v$ cancel out (as they must), anc. the zesult can be written in the form,

$$
(: m) v_{e x}+(A m)(\cdot v)=m(\cdot v) .
$$

If we consicier a sufficiently small burst of thrust, we can make $v$ as small as we wish comparel to vex, and the second term on the left-hand stce of this equation ca.. be made completsiy negligible combared to the first term. Then we can write (ffr very siall bursts of thrust):

$$
\begin{equation*}
\frac{: m}{m}=\frac{v}{v_{e x}} \tag{1}
\end{equation*}
$$

Notice that thas relatacn does not depend in any way on the length of time during which the change iv cocurs. The fuel m mav be burnect very rabidy or very slowly. As long as the exhaust aases emerge with veloclty vex relative to the roclet, the resulting momentum changes wili be the same, and wiil lead to the same relation Eq. (1), whenever the changes are sufficiently small. Not ce also that this result denends only on the conservation of momentum; we have usec no other law in deriving it.

Now, a moderately large bu.st of power can be divadec conceptually into a great many consecutive small bursts, ans! rq. (1) shows that each small incraase in velocity requres ejerting a quen fraction of the remaining mass of the rocket Tie rules of this "1:cverted compount-interest payment" are examıned in the afnendix to this chapter. There we find (Eq. A6) that any velocity chanje $v_{C}$, liage or small, requires reducing che fass of the rocket as follors:
or

$$
\left.m=m_{0} e^{-(v} c^{/ v} e x\right)
$$

$$
\begin{equation*}
m / m_{0}=e^{-\left(v_{c} / v_{e x}\right)} \tag{2}
\end{equation*}
$$

Here $m_{0}$ is the mass before the chance, and $m$ is the mass after the change. "he quantity e is a certain numer wose value is
(a) JUST BEFORE FIRING OFF Am:

(b) JUST AFTER FIRING OFF Lm:


Fig. 1. Analysis of the performance of a rocket. Note that the "backwards" velocicy of the spent fuel, namely $v_{e x}-v_{0}$ mıght actually be negative as seen by an external observer. This would happen "if $v$ is larger than $v e x$ " in which case the exhaust "cloud" is seen to movéoff to the right, too, dlthough at a speed less than that of the rocket.

$$
\begin{equation*}
e=2.718 \ldots=10^{0.4343} \ldots \tag{3}
\end{equation*}
$$

One use of Eq. (2) $2 s$ in computing the final velocity $v f$ of a rocket that has initial mass mo, initial speed vo, final mass mife and exhaust velocity vex. The result is

$$
\frac{m_{f}}{m_{0}}=e^{-\left(v_{f} / v_{e x}\right)},
$$

as shown graphically in Fig. 2.

F.q. (2) is the rocket equation. Unless a table of powers of e happens to be handy, the most convenient way to write this equation 25 the foilowing:

$$
\begin{equation*}
m_{0}=(m) 10^{\left(0.4343 v_{c} / v_{e x}\right)} \tag{4}
\end{equation*}
$$

or

$$
\begin{equation*}
\operatorname{loc}_{10}\left(m_{0} / m\right)=0.4343\left(v_{c} / v_{e x}\right) \tag{5}
\end{equation*}
$$

This relation $2 s$ based only or the conservation of momentum and on the concept of a constant exhaust velocity vex (constant with respect to the body of tho rocket) for the spent part of the fuel. (But the relation $2 s$ idealizes in the sense that we have not taken into account any accelerations due to gravity.)

As an example, suppose that we wish to give a rocket a final velocity equal to twice the exhaust velocity of 2 ts engines, starting with the rocket at rest. Then $v_{c}=2 v e x$, and we have:

$$
m_{0}=(\mathrm{m}) 10^{0.8686}=7.39(\mathrm{~m})
$$

That $2 s$, the original takeoff mass $m_{8}$ must be over 7 times the final mass. In other words, about 87 percent of the initial mass must be expelled to achieve a velocity of $2 v e x$. The useful payload must be somewhat less than the remaining 13 percent of the takeoff mass, because the rocket casing, its fuel tanks, and the like will constitute much of this remalning mass.

Practical rockets. The rocket equation shows that the most mportant Feature of a rrofet is vex, the velocity with wioh the spent fue: gases are expelle.. When chemacal fuels are use. " there is a limit to 'row' large this exhaust velocit" can le. he can"see tis by apalyzad the law of energy conservation to the 1 nterior of the rocket.

Consicier what happens when a alven mass m of fuel and oxdizzer are combined, with the fuel burning in the oxidizer. Iet the total energy produced by this chemical reaction lie P , Obvously, the ratio $\mathrm{r} / \mathrm{m}$, which is the energy per unit mass of fuel ans oxidizer, will be a constant that depencis only on the chemical nature of the fuel and the oxidizer. After the materials have reacted, the total mass m is ejected
 mass 15 Just $-m(v e x)$. Since tris e eray comes from burning the fuel, it can be no greater than the chemacal eneray liberatea, namely :

$$
m\left(v_{e x}\right)^{2}-I
$$

Divicina by 'im and takina square roots, we fird:

$$
\begin{equation*}
\mathrm{v}_{\mathrm{ex}} \quad \therefore \overline{2(\mathrm{~F} / \mathrm{m})} \tag{6}
\end{equation*}
$$

These relations are not simnle equalitits because much of the reieasea eneray will be wasted, primarily as internal (rancom motion) heat energy in the still-hot exhaust aases.

Chemısts have measured the "heats of reaction" (wheh (ietermines $1 / \mathrm{m}$ ) for almost all chemical reactions. For example, for typical hycrocarbons such as fuel oll, qasoline, kerosene, ans the like, they have founc: that about 1.1 , $10^{\circ}$ kcal are qiven off for each kiloqram of fuel nurnea. When we add the mass of oxygen required (about 3,4 ha per ka of fued) and conveit to mechanical units, we find that $\because / m$ for all of these fueis is very nearly $10^{7} \mathrm{~J} / \mathrm{kg}$. Therefore, accoriing to Eq. (6),

$$
v_{\mathrm{ex}} \cdot . \overline{20} \cdot 10^{3} \mathrm{~m} / \mathrm{sec}=4.5 \mathrm{~km} / \mathrm{sec}
$$

for hydrocarbon fuels buined in oxygen. This, of course, is the largest value that could possibly be obtained, even if the exhaust gases emeryed ice-cold. In actual practice, many current rockets using kerosene and liquid oxygen (called LOX) obtain rouqhly:

$$
\begin{equation*}
v_{\mathrm{ex}}=2.5 \mathrm{~km} / \mathrm{sec} . \tag{7}
\end{equation*}
$$

Even liquid hydroqen and liquid fluorine will yield exhaust velocities only about 20 percent greater than this in practace.* Consequently whenever the speed of the rocket has to be substantialiy more than this value of vex-and we shall see in the next section that this is indeed so even for orbital fliohts-the useful payload is in practice only a small fraction of the oriainal mass, by Fa. (2).

In view of this limitation on the fundamental quantity vex for chemscal rockets, a number of proposals and experimental models have been made for nonchemical rockets where vex may not have these limitations. To date, none of these has offered any real advantage, although they may do so in the future. The difficulty is that today the auxiliary apparatus for $10 n-b e a m$ engines, nuclear reactors, and the lihe, always contains too much mass relative to the mass allowance needed for any significant payload. Eventually, of course, we might be able to do ruch better with nonchemical engines.

* Specific impulse is a term often used by rocket engineers who use the symbol If frit. It 15 essentially impulse fer unit weight of fuel and equals the exhaust velocity divided by the acceleration of gravity at the earth's surface: $I=v e x / q$. Typlcal practical values are therefore about 250 sec .

Artificial sateliltes. Now let us see what velocities we need to perform the simplest tass of snace enolneerino, ramely placina an artificial satellite in orbit adove the surface of the earth. Since the racius of the eartl. 1 s atout 4000 miles, the forcu of qravity on a satellite moving perhaps a fek huncrec miles above the earth's sirface will be not very different from that on the surface. Thuc, the satellite will experience an acceleration of approximately a towarc the center ot the earth. is we sa: in Chapter 5 if $i t$ is travelling ir d circular orbit with speed $v$. its centripetal acceleration must re $v / R$ where $R 1 s$ the racius of the orbit. For these two facts to be consistent,

$$
v: / R=q \quad \text { or } \quad v=\sqrt{R q}
$$

Since the satellite is assumed to he farrly close to the earth, the radius of 1 ts orbit $R$ will be about the same as the radius of the earth, or about 6400 km . Substituting this value, 210 nq with $\mathrm{q}=9.8 \mathrm{~m} / \mathrm{sec}$. $=0.0098 \mathrm{~km} / \mathrm{sec}^{\circ}$, 1 nto our Eormula, we obtain

$$
\begin{equation*}
v=8 \mathrm{~km} / \mathrm{sec} \quad(\text { close orbıt }) \tag{8}
\end{equation*}
$$

This is the approximate speec an object must have if it is to remair ir orbit. İ. (7) displays the cocket-exhaust velocities achieved when chemical enqines are used. Are these velocities adequate? From Egs. (7) and (8), we have

$$
v_{c} / v_{e x}=8 / 2.5=3.2 .
$$

Substituting this value into the rocket equation (4) or (5), we finc:

$$
m_{0}=(m) 10^{1.39}=24.5(\mathrm{~m})
$$

That 1 s , the takeoff mass mo must be almost 25 times the mass of the satellite and all other non-fuel structures; thus only about 4 percent of the initial mass can actually co into orbit (even ianoring the problem of lifting it to orbit altitude, which we shall examine shortly).

But the situation is even worse than these numbars may seem to imply at first, The other nonfuel structures"-the rocket's casirg, frameworl., fuel tanks, fuel pumps, and the like-have much more mass than the payload, the satelifte. In fact even with the best of modern structural materials and techniques, there $1 s$ so far no rocket mechanism wit? a mass less than about $1 / 10$ of the mass of the fuel it can carry (rather than 1/25). According to our foregoing result, a rocket of thas sort could not be put into orbit at all.

The way out of these difficulties is to use the techrigue of stagnag, which essentially amounts to putting a small rocket onto a larqer rocket (and this combination onto a thira, still larger rochet, and so on as necessary). The fundamental rocket equation is not circumvented by this strategem; it remains valid. Fut heavy casinqs ar fuel tank.s can be thrown away as soon as their fuel is used up, and vie remaining fuel in the remair رchet then need only accelerate the remainina mass, which can be mucı waller. In this way, the remaining fucl is used rore efficiently toward the end of the proctss, and the ideal limit expressed by the rocket equation can be more nearly approached. It cannot be exceeded. for that would violate the conservation of momentum, upon which the rocket equation is based.

There is one further matter that we should look into. We have neglected to compute the work we must do to lift the payload up into its orbit aqainst the downwarc force of gravity. (snyone who has iatched
plctures of a bag rocket taking off nas seen boh, at the siart, thrust must be macreased until the rochet's owr weleht on the launching pad is balancec ard the net acceleration unwar: can berir.) This work, however, $1 s$ not terrably large, relaizvely sweakinc, for a close-in orbit, as we can easily show. In ohtamnirala. (8), we derived the relation $v=R g$ for the orbital velocity. If we multaply thas equation by, m, we find that the orbital kinetic enerry is mv = map. The potential eneray chance in liftinn the mass to he: mit $h$ above the surface of the earth 15 mah. Si:ace h 15 only a few hundres miles while R 154000 miles or more, the werk (mat) reguirec to raise the satellite will he oniy about $1 / 10$ to $1 / 5$ of the worb (maR) required to dive it orbiting speed in a close-in orbit. ("aturally, this is rot true for a very large orbit with a helqht of s.. 4000 miles or more above the earth's surface.)

Interplaretary travel. To senc instruments to other planets, we must first free them from the gravitational attraction of the earth. 'rhis requires that the payload be quven a velocity sufficient to prevent it Eroln returring close to the earth of its own accord. rhe smallest such velocity is called the escape velocity. A vehicle with this velocity will Just barely escape, and its final velocity will be nearly zero rela-ive to the earth.

As mabte be expectec, the escape velocity is not enormously greater than orlital velocity, and in the appemizx to this chapter, we show that 1t is alout:

$$
\begin{equation*}
\ddot{\gamma}(\text { for escape })=11.2 \mathrm{~km} / \mathrm{sec} \tag{9}
\end{equation*}
$$

as compared to $\because$ (for close orblt) $=8 \mathrm{~km} / \mathrm{sec}$.
Even thas moderately greater (than orliztal) velocity for escape requires a rather large 1 ncrease $1 n$ the ratio of takeoff mass to payload mass. Whth vex equal to $2.5 \mathrm{~km} / \mathrm{sec}$ as 1 n Fg . (7), we have $\mathrm{v}_{\mathrm{c}} /$ vex $=11.2 .2 .5$ $=4.48$, anu the rocket equation (ig. 4) yıelas:

$$
m_{0}=(\mathrm{m}) 10^{1.95}=89(\mathrm{~m})
$$

So. despite the secmingly modest change $1 n$ velocity (11.2 km/sec instead of $8 \mathrm{~km} / \mathrm{sec})$, free:no a payloas: from the earth with cherically fueled rockets (even in stages) requires about 3 t times as much fuel as regulred for placing the same payloac. into a close-in orbit.
nnce essentially free of the earth, a body will still be under the direct $1 n f l u e n c e$ of the sun's gravitational forces. Here $1 t$ is necessary to recall that the earth already has a rather large orbital velocity around the sun, and that any body launched from the earth will continue to have that orbital velocity if it has been merely freed from the earth with no aciditional accelerations. This velocity is about $30 \mathrm{~km} / \mathrm{sec}$ and ciearly represents a very substantial bonus for anterplanetary travel. Even so, the "ariner 4 rrobe to "ars, for example, actually required a takeoff mass 400 times as larie as the mass of the probe itself. The rocket was an Atlas-Agena witn an 1 nitial masc of aboat 200,000 1bs. anc a payload of 500 lis. It was desimned to cover the $3 \times 10^{\mathrm{m}}$ mile trip in the solar system $1 n$ dbout 7 morths (this works out at about 16 miles/sec).


F1g. 3

Trayel to a star? When we thank of sendina a payload to examine a star, we finc once more that the necessary velocity is the crucial factor, but the origin of the neecied velocity is different. The velocity reguized to escape from the solar system is about 45 km , sec, but even the nearest stars are enormously far away, and the payload must travel much faster than thas if it is to comblete its journey vithin a century.

The distances to the nearest stars have been measured by observing the shift in their apparent positions in, say. summer and winter as the earth moves from one sile of 1 ts orbit to the other. Fiven with this very larae baseline ( 186 mili ion miles), the apparent shift in directionthe parallax-is extremely small, and the corresponding distances are found to be several mallion mallion miles, d.e. severai trillion miles. Such larae distances are more convenienty expressed in light years, a light year being the distance that light $k i l i$ travel in one yeir. A simple multipilation shows that one 11 ght year 15 about $10^{\circ} \mathrm{km}$.

The two nearest stars are 2 the constellation centaurus. The nearest one, froxima centaurı, is 4.2 light years dwav but is very dim and emits only ahout $10^{\circ}$ tames as much light as our sun. The next-to-nearest star, Alpha Centauri, 154.3 limht years away and is actually a double star, consisting of two stars similar to our sun and separated by about the dis*ance between the sun and Jupiter. The bisghter of the two emits energy at about the same rate as our sin, and the other at about $1 / 5$ that rate.

While one of these particilar stars seems likely to have habitable planets corparable to our own, it might le very $1 n t e r e s t a n g$ to sens instruments in close to one of them anc take pictures of $1 t$. To see just what problems such a progect maght entall. let us examane this simplest of all $\quad$ 'iterstesiar journeys a little moré closely.
pire first question to be answered is how long we would be willing to wait for the results of the ourney, Although an unmanned instrument paskage need not return to the earth within a man's lifespan, it neverthel'ss seems that we would be unlikely to plan toriay for a very expensive oruject whose results would be fonow later than, say, a century from now.

If the payloas is to cravel 4.2 l:a.t years cur2rg 100 years, 2 is
 spee? Vc is $12.6 \cdot 10^{\circ} \mathrm{km} / \mathrm{sec}$. Let us ontimistically assume that re can soon design rockets $\because \because \cdot b$ exha.st lejocities thice as hat. as the ones we now ha'e, eren thourl $2 t$ is infeicilt to see row how this coula be cone whth che-1ca! fuels, thus, we assume vex $=5 \mathrm{~km} / \mathrm{sec}$. rhen we have vc/rex $=2.52$ - 10 ', which we substitute 1 rito the rocket equation. ( Both speess are smadl enougn so that we can use t'is ronrelativistic equation; actually the relailvistic one qives s!ightiy rore pessimistic results.)

When $w=$ make this substitution in Fg . (4), we fana a resile that can only be describec as riciculous:

$$
m_{0}=(m) 10^{1094}
$$

To see Just how mpossibly large thas mass ratio 15 , we might note that the total number of atoms 10 the entire solar system has leen esimated to be less thar $10^{\circ}$. There is not enouch chemical fuel in the entire solar system to send even one atom on such a journpy! in fact, we are short of having enough fuel for even that trivial task by a factor of over $10^{\circ}$ !

These numiers are so large that the mina can not really form ar adequate pleture of their hugeness. To reduce them, let us throw caution to the finds and allow a much longer time for the journey, for example, 5000 years of 50 centuries-a terribly lona wait. Retracirg the aritnmetac we find that we t'en obtar.

$$
r_{0}=(\mathrm{m}) 10^{21.9}=8 \times 10^{21}(\mathrm{~m})
$$

Fven this more familiar sort of numler is still absurdy large. The mass of the entire earth is only 6 : 10: tons, less than enouah (even if it were all good fuel-and to be so used!) to send a one-ton paylcad on a journey of 5000 years to the rearest star.

There is only one sensible conclusion: interstellar travel is mpossible $1 f$ chemical fuels are usec for propulsion.

Future star travel? Perhaps one of the concelvable nonchemacal rociets might someday offer an cape from this pessimistic conclusion. To look at thas possibility, let us return to our simplest of interstellar journeys, a trip to the nearest star 1 n 100 years. As we saw, we need a velocity $v_{c}$ of 12.6 . 10 : $\mathrm{km} / \mathrm{sec}$ for such a journey. (with"this veloc1ty, the payload arrives at Alpha centauri after 100 years; it must contain elther a very powerful radio transmıtter, or enourh fuel to return in another 100 years or so.)

The various "plasma" enqines and "magnetohydrodynamic" engines that have been proposid are essentially electric "gurns" that shoot out ionized gases. It is difficult to set limitina numbers on the best possible performance from such enqınes, partly because the exhaust gases are usually accelerated by some separate source of power. Ccrtanny, they can be no better than nuclear enganes, whach we shall examane later. It as probajly fair to say that exhaust velocities much larger than $1 / 300$ the velocity of lig! t coula not te expected when very larae masses of 10 nized gas must be expe-led.

If we aciopt this estromte, then a value of vex of 1000 im/sec is atcut the best that coulc coer le expecto: exm such non-nuclear engines. a: at thas value we obta:n the ratio ${ }^{\circ} \mathrm{c} / \mathrm{cos}_{\mathrm{e}}=12.6$, and by arsertare tias mato the rocket equation, la. (4), we ret the result,

$$
m_{0}=(m) 10^{5} \cdot 47=3 \quad 10^{5}(m)
$$

Thus, a 3-ton payload woul: reculre at least a ma.lasa fons of "fue:" (material to be expellea as :onizec ass). If tic :Noa is :o contarn a sufficiently powerful racio transmitter, it :s likely to kergh at least 3 tens. To form some picture of what a million tors of material might look like, we may rote that a mill:on tonc of nater woul, conne a foctalal frele to a depth of 200 yarss.

Abandoning the racio transmitter anc waiting another 100 years for the payload to rnturn would be no way to avela ihas large mass of "fuel, " tecause the effective payload on the outwark journey hnuld ther have to include all the "fuel" for reveising the valocity for the retura trip. Thas
 far worse; even only one pound of true rayloat then reaures ropmillion tons of takeoff mass.

These results are not quate so raciculous as the ones we oltaraned whe: we tirled to use chem:cal fuels, hut they cleara show that ron-team enghnes will not be very practical for intersteliur travel unless they can consistently five ar exhaust velocity sionifirantly greater than $1 ; 300$ the velecity of laght.

Yuclear fission yields about 8.2. 10.' joules per hilcaram of fissionable materıal. According to rg. (6), thas will result in a maxamumexhaust velocity of the prociucts of fission of 12.8 . $10^{5} \mathrm{~m} / \mathrm{sec}$. or 12.8 . . 0 $\mathrm{km} / \mathrm{sec}$, about $1 / 23$ the velocity of ilght.*

These exhaust velocities at lase begin to approach what we nees for the simplest of interstellar journeys. For the luv-year, one-way timp to Alpha Centaurı, the necessary ve is just alout exactly egual to the vex that we might hope to obtain for nuclear fassion prodicts, and the rocket equation then gives mo/m=2.7 to 3. This, in itself, is so clearly practical that we miaht beqin to consider "ating the elapsed time somewhat shorter or journeying furtner to a few of the slightly more distant stars. Note, however, that a 20 -year, one-way trap to Alpha centaura would still require $\mathrm{m}_{\mathrm{o}} / \mathrm{m}=200$ approximately.

Lut present day engineering as a lonc way from beang able to put a small nuclear reactor on a rocket to provide these exhaust velocitaes for fission products. Today's nuclear reactors involve so much autitional mass besides their fuel that they would be even less weful than engines working with chemical fuels-and the latter are hopeless for interstellar Journeys, as we have seen. It was only by ganoriri these auniliary difficulties that we have made nuclear yower appear to be the answer for interstellar travel. What is likely, however, is the development of nuclear reactors that do not emst the relatively heavy fission prociucts, but that provide heat to a supply of hydrogen that is pumped over the Eq. (6): $v$ vated by 1 t , and ejected at correspondingly hacher spees (see Eq. (6): $v_{\text {ex }}{ }^{1 s}$ proportional to $\cdot \Gamma / \mathrm{m}$.

* The best possible nuclear fusion reaction, convertirg 4 hydrogen nuclei into a hellum rucleus, gives about $1 / 8$ the velocity of light But non-explosive "slow" fusion teactors are far from heing availanie on the earth, not to speak or the availumilty of a portable mociel for use 10 rockets!

If we are ever golng to senc instruments, let aione men, to even tine nearest stars, we must firs: develop an almost iceal nuclear rocket (or an ion-beam rocket viriually eçulvalent to it). Even then, the simplest suct. trip will require many decacies.

The perfect rocket. If we agree to ignore guestions of enqineering knowhow, is there any absolute limıt to now effective any rocket coi:ic possi'sly be? There $1 S$ indeec such a linit anc $1 \pm 15$ imposec by the facts of physics; physical energy sannot leave the rocket at an exhacis velocity greater than $c$, the velocity of light. And when any energy (say of amount E) is lost by the rocket. it alsc loses a (rest) mass of $m=E / c^{\circ}$. Tris is true whether the energy $E$ is carried off in the exhaust of some gas or in the form of a beam of light that escapes from the back of the socket. This last possibility is suggested by certain reactions between $\epsilon$ mentary particles, reactions known as annibilations. When an electron e e) and a Dositron ( $e^{4}$ ) Eeact sufziciently strongly, both particles visappear and in their place appear two qamma rays; the latter are photons, like light or $x$-ray photons, that travel at th. speec of light anc togetier carry all of the enerqy represinted $t y+12$ masses of the vanished enectron and positron. The reaction suggests that one may call the electron a particle of matter and the positrin a particle of anel-matter.

This annihilation of positrons with electrons was the £irst reaction of this kind that was observed; but in the late 1950's, moti-protons and anti-neutrons were also discovered, and each was observed to annililate with its orcinary counterpart, the usual proton or neutron respectively, prociucing tho energetıc gamma rays in each case. Thus, $i t$ beca* a clear that a whele system of anti-matter-anti-hycrogen, anti-helium, and so on-could be constructed from the elementary anti-particles. We do not yet know how to do tils to any significant extent, but we jnow of no physical law that would irorrit it.

Since we have already ag\& cnd to lgnore practical manufacturing problems in this discussion, iet us assume that iarqe amounts of antimatter might be made available. What could we do with such a mateilal if .e had it? It would not be an inexpensive supply, because to manufacture it would require at least as much energy as lt ioulc iater qive back. But it would represent a very efficient way of storing energy, Indeec, antimatter, plus orcinary matter to "burn" $1 \pm$ with, would have the smallest ratio of stored energy to total mass that $1 s$ physically possible, ramely $E / m=c^{2}$. Moreover, because the releases fonoton) energy will depart at the speed of light, such a "Euel" would constitute the best possibie rocket fuel (provided we could finc a way of majing the photons travel backwarcis from the rocket).

Naturally, we must use relativistic mechanics to derive the equations for such ar exot:c rocket. We shall not co so ner: but will rerely quote the result; $1 f$ the exhaust velocity equals ise velocit: of light, then

$$
\begin{equation*}
\frac{m_{0}}{m}=\sqrt{\frac{c+v_{c}}{c-v_{c}}} \tag{10}
\end{equation*}
$$

where all the symbols have thr same meanings as burore. This is the mass equation for a perfect rocket.
[Notr, by the way, that a man on the rocket sees the oxhaust energy leaving the rocket at the velocity of light; at the sare time a man on tie earth, say, will see the rocket traveling at the velocity of ilght relative to the earth, This is one of those paradoxes (seeming contradictions) of relativity that cannot be reconciled with our ordirary experience.l

> hould such a "perfect" rocket make it easier for us to travei to the stars? ore answer is: "A litte, perhaps, but not much." Ever this sall cegree of optimismis justifiable oniy if we may ignore a number of serious practical fi.cither of serious practicai cifficuities in addition to that of creating the necessary anti-matter for fuel.

Let is analyze a "typical" journey, preferanly a rather simple one. As stated before, the nearest stars are about 4 inght years away, put an ideal nuclear rocket would suffice for such a trip, so let us consider a slichtly longer journey. Nithin a wistance of l2 to i3 light years from the earth. there are abot: 20 stars. (of these, orly Alpha certauri is closely similar to our sun two others emit about $1 / 3$ as much erergy as does the sun arc one other emits about 5 times as mucn. mhe remaining ones are either very much arighter or very much dim. thar the sun.

Accoringily, let us consicier a rounc trip from the ear so a star 12 light years away anc back. Since we would have to wait 44 years for light rays to make the round trip, the top speer of the rocket must be close to the speed of ligint if the rocket $: 2$ to return to the base on earth iuring our lifetine. But we woulci not want the rocket to fly past its distant goal at searly the speed of light, and it will take about as long to slow the rocket down as it did to speed it up in the first place. Thus the velocity of the rocket would have to vary approximately
as snown in fig. 4 .

To avoid imposing unculy large forces on the men inside the rocket, we must keep the accelerations and ciecelerations smali; at an average acceleration of $l \mathrm{~g}$, one can calculate that about a year will be reGuirec to reach full speed, and another year to stop. To keep the total time for the journey reasonably small, we shali choose a top speed of 0.8 c , that is, only 20 is less than the speed of light.

Journeys of tins Eype involve, therefore, four separate steps: acceleration, deceleration, reacceleration, and a final leceleration. The rass equation applies to each one, but we must remember that, during each step, we must accelerate for decelerate) all of the fuel mass that will be reeded for all the succeeding steps. For one step of the journey in. Eig, i, the mass fquation Eq. (I) yields

$$
\frac{m_{0}}{m}=\sqrt{\frac{c+0.8 c}{c-0.8 c}}=\sqrt{\frac{1+0.8}{1-0.8}}=3 .
$$

But if m represents the true payload, this result applies only to the final deceleration. For example, the mass at the beginning of this final step must be $m_{0}=3$, and this must be the "payioad" for the next-to-last step, the acceleration for the return trip. Thus, the return trip must begin with a total mass of $3 \mathrm{~m}_{\mathrm{o}}=\left(3^{2} \mathrm{~m}\right)$ It is easy to show in the sare way that the two steps of the outward leg of the journey will introduce two more factors of 3 . Thus, if moo denotes the take-off mass when the rocket leates the earth (anc $m$ denotes the true payload, as before), we find:

$$
\frac{m_{00}}{m}=3^{4}=81
$$

That is, each ton of payload requires 81 tons of combined take-off mass. A lo-ton payload would require almost a thousand tons of fuel for the journey we have considored-anc: haif of this fuel must be antiomattor obviously, we would have to learn how to manufacture anti-matter in very large amounts indeed.


Fig. 4 A movest interstellar journey

With these assumptions about the trip, 1 t 1 s possible to show that the Journey we have discussed wolll: take 32 years as measured on the earth. But because of relativistic time-dilation for the inhabitants of the moving systems, it turns out that the crew of the rocket would ace by only 20 years. That $1 s$, as measured $L y$ the crew, the journey would require oniy 20 years.

The perfect rocket has further difficulties that we have not yet mentioned. First, the energy flux of amma rays from such a rocket with a lo-ton payload, can be shown to be $2.4 \times 10^{15}$ watts, a power that $1 s$ equivalent to a $1-k 110$ bomb once every 1.7 seconds! And all of this energy flux is in the form of very penetrating, deadiy gamma rays. The payload would have to be shielded very well indeed from even the slightest leakage of all this energy-to say nothing of the difficulties of shielding the earth and its inhabitants as the rocket takes off. Figure 5 indicates how the rocket might look in principle.

Secondly, a glance at Eig. 5 reveals another very serious difficulty. Anti-matter would act as a "univerra' solvent," reacting readily with any ordinary matter that it contacts. Then, in what can we store $1 t$ ? Within our present knowledge, this problem has no solution.

Thus, we have found that a perfect rocket probably cannot be bu: it and that, even if it could be built, it would not extend the range of possible space travel very much beyond the meager capabilities of an ldeal nuclear rocket. Even the nuclear rocket is presently a long way from being practical. For the timo being, of course, there are many exciting possibilities for exploring orar own solar system with the chemically fueled rockets we already know how to build. The dreams of space travel are coming true, but only on a "local"basis.

Communicating through space. This final section is closely based on, and copiously cites Erom, E. M. Purcell's article "Radioastronomy and Communication through Space." Brookhaven National lecture series *BNL $658-(T-214)$; we wish to thank Dr. Purcell and the BNL for permission to use this material.

Now we shall discuss a very different aspect 0 : space engineering, namely, sending signals, rather than physical hardware, across the huge distances of space. The signals that we know how to send most efficiently are coded radio waves, but our discission will also apply to the light beam from a laser or to any other type of electromagnetic radiatior. if the necessary engineering "know-how" can be developed. Radio signals suitable for communicating over a distance or a few hundred miles require relatively little energy, but a large amount of energy is needed in communicating across the vast reaches of space.

The simplest possible radio signal is just the presence or absence of a radio wave or equally well, the presence or absence of a small shift in its frequency (sc-called "frequency-shift keying"). Correspondingly, the simplest possible sign that can be written on a piece of paper is the presence or absence of a black dot in some agreed-upon location. Newspaper photographs are arrays of such dots. Television pictures are buidt up in much the same way.

The simplest possinlo signal, then, expresses a two-fold ("binary") choice, a sarple "yes or no," a "something or nothing" signal. More complicated codes can always be broken down into such signals. For example, a Morse code dot maght be called a "yes" and the space between


Fig. 5 A perfecl rocket?
two dots a "no"; then the dash becomes two successive "yesses," and the longer space between two letters is represented by two successive "noes," and so on.

This way of analyzing signals was Eirst suggested by the American radio engineer R. V. L. Hartiey in 1928 , and it was further developed by C.E. Shannon at Bell Telephone Laboratories in 1948. Shannon called the simplest yes-no signal a bit (for "binary digit"), and he first developed much of the analysis that we shall be using in this section. This analysis is a part of "information theory."

For space communication, the important fact is that each bit (each yes-no signal) requires a very small amount of energy. Just as space is filled with very faint light rays from the stars, it is filied also with a background of weak radio waves of all types. If we are to de. tect a signal from outer space against this "nolse," we must receive enough energy to be sure that the supposed signal is not just one of the random mutterings of space itself. Near our solar system, a received signal energy of at least $10^{-2} i$ joule per bit is required. fhis requirement is essentially independent of the radio frequency or the manner in which the sign-i is coded in the radio wave, and presumabiy it remains about the same in many parts of empty space.

As an example, let us consider the task of the Mariner IV space probe, namely to send good television pictures of Mars back to the earth. Since such a picture contains an array of about $1000-b y-1000$ dots, one pleture can be transmitted by a signal consisting of about iof bits. The signal can be detected if, on raching the earth, it delivers (to our receiving antenna) $10^{6} \times 1 u^{2} 1$ joule $=10^{-15}$ joule for each picture that is to be transmıtted.

But what the transmitter emits must be much more energy than what we intercept and receive at a distance. A simple radio antenna sends the energy outward more or less equally in all directions. A properly designed complex antenna can concentrate most of the energy into a narrow beam, but such an antenna must be large (compared to the wavelength of the radio waves), and it must be very accurately shaped. Not oniy is this difficult to do, but once it is done, the antenna must be pointed toward the recelver, accurately enough to be sure that the receiver lies inside the radio beam, and this pointing operation in turn requires additional machinery and sensors that must be equally accurate. Thus, a space probe such as Mariner must contain either a rather large radio transmitter or else a smaller transmitter and a lot of complex, rather heavy machinery.

The best compromise amongst all the possibilities will ciepend on the purpose of the space probe and on the status of various endineering arts at the time the probe is designed. But we can obtain a rough idea of the weight of the necessary equipment by analyzing the situation when a simple antenna is used.

Fig. 6 summarizes the situation. Notice that the receiving antenna on the earth can be quite large, and we shall assume that it has a diameter of 100 m (about 100 yards). Only the radio energy that happens to strike the receiving antenna will be useful. Thus, the fraction of the energy that is useful will be given by the ratio of the area of the recelving antenna to the area of a sphere whose radius is equal to the distance from Mars to the earth, about $10^{6} \mathrm{~km}=10^{11} \mathrm{~m}$ (see Fig. 6). The ratio of these areas is

$$
\frac{\pi(50)^{2}}{4 \pi\left(20^{11}\right)^{2}}=6 \times 10^{-20}
$$



Fig. 6 Sending television pictures from Mars to the earth. (The diagram is not to scale:)

We have seen that the recelved energy must be at least $10^{-15}$ joule per picture. The energy that must be transmitted for each picture, however, m'ast be

$$
\frac{10^{-15}}{6 \times 10^{-20}}=16 \times 10^{3} \text { joules per picture }
$$

Although this amounts to only about 0.005 kw -hr, a rather small amount of energy by our normal standards, it does represent something of a burden to a space probe. To compare it with something familiar, we might note that the average autcinobile battery could store only enough energy for sending about 100 such pictures. Actually, this is a very optimistic estimate because we have computed it by using the minimum possible energy per bit of "information," namely lo-2l joules per bit. If we are going to go to all the trouble of sending a probe to Mars, we would want the signal that it sends back to be quite strong, not just barely detectable, lest we miss it entirely. Thus, it would be more realistic to say that an automobile battery can store enough energy to send about 10 television pictures from Mars to the earth.

Since such a battery would welgh about 351 b , and since the ratio of take-off mass to payload mass was about 400 for Mariner IV, the energy storage for 10 television pictures of Mars would add about 7 tons to the take-off mass of such a probe, if a nondirention antenna were used to send the pictures back to the earth. Actually, Mariner IV used a rather highly directional "dish" antenna, but note that the antenna and its pointing equipment must have weighed less than 35 lb if it was to economaze on take-off weight.

Although these energies and masses are perhap, surprisingly large when we consider that they all arose from the very siall number of goules per ort $\left(10^{-21}\right.$, see $p$. 16), they are nevertheless silall compared to the masses and energies that would be necessary to send phisical hardware back fro. Mars. For example, even a small canister of exposed photographic film might weigh l lb, but we would have to send aleng with it enough fuel to start it on its return journey, namely about 400 lb of fuel. This would add $400 \times 400 \mathrm{lb}$ or no less than 80 tons to the original take-off mass when the probe leaves the earth-and we have c mpletely ignored the extra equipment that would be needed to ensure both a proper return orbit and a safe re-entry through the earth's atmosphere.

When we consider the very much areater distances to the nearer stars, the economy of sending suanals rather than hardware becomes even more marked. We have seen that nothing short of an ideal nuclear rocket can send a physical payload to the nearest star, and that even then the trip would require several tens of years. nn the other hand, if we consider distances as areat as 12 light years (containing 20 to 30 stars), it 1 , possible to show that, with $300-f t$ antennas at the transmitter and receiver, a ten-word telegram can be sent with about a kilowatt-hour of radiated energy (Fig. 7). This is less than one dollar's worth of energy at current prices.

Of course, the trouble is that there is no body at the other end to communicate to. Or is there? In the remainder of this section, we shall discuss the question of communicatina with other people out thereif there are any.*


[^9] through Space" [BNL lecture series ${ }^{\text {BNL }} 658$ (T-214)], p.9.

Let us look at gust our own galaxy. There are some lo. stars $2 \pi$ the galaxy. Double stars are by no means uncommon, ant mafact, there appear to le almost as :any double stars as single stars. astrororers take this as a hat that pianetary systers around stars may not be very ur. common elther. voreover, a large num: er of stars are not raplily spannang. One gooc way for a star to lose most of its span is by de:teracting with ats planets; that :s what prolaliy happene: 1 : our own solar system. So the chances that there are huncreds of millions of plaretary sistems among the hanorea billion stars in our alaxy seem gooi. One can elaborate on thas, but we shall not try to estimate the probai,ility that a planet oceurs at a suitolie cistance from a star, that it has an atmosphere in whach life is possible, that life developec, arc: so on. Very soc: in such speculation the worc "probability" loses any practacal meaning. On the other hani, one can scarcely escane the impression that 1 t woulc be rather remarhable if only one planet in a bilion (to speak only of our own galaxy) had become the home of inteliagent life.

Since we can communicate so easily over such vast alstances, it ought to be easy to establish communication with a society (if we may use that word) in a remote spot. It would be even easier for them to initiate communication with us if they were technologically aheac of us. Should we try to listen for such communications, or should we broadicast a message and hope that someone will hear it? If you thank about thas a little, you wall prohably agree that we want to listen before we transmat. The hastoric tame scale of our galaxy is very long, whereas wireless telecraphy on Farth 15 only 50 years old, and really sensitive recelvers are much more recent. If we bank on people who are able to recelve our signals but have not surpassec us technologically, that is, people who are not more than 20 years behind us but still not ahead, we are exploring a very than slice of history. On the other hand, if we listen instead of transmatting, we maght hear messages from people anyWhere who are ahead of us and happen to have the urge to send out signals. Alsc, beara technologically more acivanced than we are, they can presumably transmit much better than we can: So it would not be sensible for us to transmit until we have listenes for a lonc time.

If you want to transmat to someone-and you and he cannot agree on what radio frecuency to use-the task is nearly hopeless. To search the entire radio spectrum for a feeble signal entails a vast waste of tame. It as like trying to meet someone in New York when you have been unable to communcate and agree on a meeting place. Still, you know you want to meet him and he wants to meet you. Where do you end up? There are only a few lakely places: at the clock of Grand Central Station, in the lobby of the Metropolitan Museum, and so on. Here, there $1 s$ only one Grand Central Station, namely the 1420 -megacycle/sec frequency ematted by hydrcgen, whach is the most promanent radio frequency in the whoie galaxy (by a factor of at least 1000). There is ro question as to whi $h$ frequency to use if you want the other fellow to hear: you plek out the frequency that he knows. Conversely, he .ll pack out the frequency that he knows we know, and that must surely be lif20-megacycle/sec frequency.

Let us assume tad ins txansmatter can raciate a megawatt of power whin a l-cycle/sec bandwisth. Thas is something that we could do ourselves if we wished to; it is just a molest stretch of the present state of the art. If we receive with a $300-\mathrm{ft}$ dish-antenna and he transmats with a similar one, we shoulc 'je able to recognize his signal even $i f$ Lt comes from several hunired laght years away. With the new maser recelvers, whach are now being used in radioastronomy, 500 light years ought to be easy. But even a sphere only 100 laght years in raciaus contains about 400 stars of roughly the same brightness as the sun. And
the volume accessible to comminication increases as the cube of the range. We have previcusiy argued that it is hopelessly difficult to travel even a few light years, and we now see that it is in principle guite easy to communicate over a few hundreds of liaht years. The ratio of the volumes is about one milison. (Fig. 8 )


F2g. 8 (From Purceli, Op. cat.)

There are other interesting questions. When we get a signal, how do we know it as real and not just some accident of cosmic static? This might be called the problem of the axe head: an archeologist finds a lump of stone that look, vaguely like an axe head; how does he know it is an axe head and not an odily shaped lump of stone? Actually, the archeologist is usually very sure. An arrowhead san look rather like an elliptical pebble, and still there 15 no doubt that it is an arrowhead. Our axe head problem can be solved in many ways. Perhaps the neatest suggestion foi devis na a message having the unmıstakable hallmark of intelligent beings ic, the suggestion made by $G$. Coccons and $p$. Moirison. They would have the sender transmit a few prime numbers, $2 . e .$, $1,3,5,7,11,13,27$. . . Thero are no mannetic storms that send messages like thas.

What can we taik a rout with our remote friends? we have a lot in common. To start whth, we five mathematics in common, and physics, chemistry, and astronomy. We have the galaxy in which we are near neaghbors. So we can open our ciscourse on common ground before we move into the more exciting exploiation of what is not common experience. of course, the conversation has ine peruilar feature of a very long builtin delay. The answer comes back leasdes later. But it gives one's children something to 100 K forward co.

## Appendix A

## Appendix A. The rocket equation

In Eq. (1), we showed that, during very small changes of velocity $\Delta v$, the following relation is required by the conservation of momentum:

$$
\frac{\Delta m}{m}=\frac{\Delta v}{v_{\mathrm{ex}}}
$$

Now we want to extend this relation to arbitrarily large changes of velocity.

A large change of velocity can be conceptually divided into a great many steps with a small change in each. Let us choose these in such a manner that all of them involve the same fractional change in the mass of the rocket. For example, we may choose

$$
\begin{equation*}
\frac{\Delta m}{m}=\frac{1}{n} \tag{A2}
\end{equation*}
$$

where $n i s$ a large number that we will leave unspecified for the moment, but it is to be the same for each small step.

Then if $m$ is the original mass of the rocket and $m_{l}$ is its mass after the first smill step of velocity change, we will have:

$$
m_{1}=\left(1-\frac{1}{n}\right) m_{0}
$$

After the second step, the mass will become:

$$
m_{2}=\left(1-\frac{1}{n}\right) m_{1}=\left(i-\frac{1}{n}\right)^{2} m_{0} .
$$

After the third step, it will be:

$$
r_{3}=\left(1-\frac{1}{n}\right)^{3} m_{0} .
$$

And it 1 s easy to see that after $k$ of our very small changes 1 velocity, the mass of the rocket will be

$$
\begin{equation*}
m_{k}=\left(1-\frac{1}{n}\right)^{k} m_{0} . \tag{A3}
\end{equation*}
$$

Now, what will be the change in the rocket's velocity during these $k$ steps of acceleration? By substituting Eq. (A2) into Eq. (Al), we find that during each step the velocity change will be:

$$
\Delta v=\frac{1}{n} v_{\mathrm{ex}}
$$

Since these are all the same, the total change in velocity during $k$ steps will be just $k(L V)$. If we denote this total charge in the rocket's velocity by $v_{c}$, we have:

$$
v_{c}=\frac{k}{n} v_{\mathrm{ex}}
$$

Now solve this relation for $k$ :

$$
k=n\left(v_{c} / v_{e x}\right)
$$

And substitute into Eq. (n3):

$$
m_{k}=m_{0}\left(1-\frac{1}{n}\right)^{n\left(v_{c} / v_{e x}\right)}
$$

If we write $m$ in place of $m_{k}$ with the understanding that $m$ now represents the rocket's mass after $k$ its velocity ha' changed by $v$, and $i f$ we use the multiplication rule for exponents, we can write ourcresult in the following form:

$$
\begin{equation*}
m=m_{0}\left[\left(1-\frac{1}{n}\right)^{n}\right]^{\left(v_{c} / v_{e x}\right)} \tag{Af}
\end{equation*}
$$

We have elimanated $k$ from our relations, by expressing if in terms of the velceity change $v_{c}$. Can we eliminate n? In a sense, we cannot, but we can replace it by $c^{a}$ less arbitrary quantity.

As we noted earlier, the sample relation Eq. (Al) is valid only for very small bursts of thrust. The smaller the burst, the more accurate Eq. (Al) becomes. In view of Eq. (A2), then our relations will all become more and more accurate as we choose $n$ larger and larger. Obviously, the best thing to do is to choose $n$ so very large that the quantity in square brackets in Eq. (A4) approaches a steady value and no longer changes significantiy. Better still, we should take the lamat of the square brackets as $n$ "approaches infinity."

Perhaps it is not obvious that this lirut exists in the sense that it is a well-defined number, but this fact can be shown by methods that we cannot pursue in this book. To agree with standard mathematical notation, we shall define a number e by the relation:

$$
\begin{equation*}
\frac{1}{e}=12 m \lambda t(\text { as } n \cdot x)\left[1-\frac{1}{n}\right]^{n} \tag{A5}
\end{equation*}
$$

The number e has been evaluated to very many decimal places, but in physics we seldom need more than a Eew places: $=2.718$ is usually quite sufficient. Another way of stating the value is often more convendent:

$$
e=10^{\circ} \cdot \sin .
$$

Now, $i f$ we let $n$ approach infinity in Eq. (A4) and substitute the defanition (A5), we obtain the result:

$$
m=m_{0}(1 / e)
$$

or

$$
\begin{equation*}
m=m_{0} e^{-\left(v_{c} / v_{e x}\right)} \tag{A6}
\end{equation*}
$$

This final relation can be rewritten in many ways. Eq. (2) of this chapter is the same as Eq. (A6); and Eqs. (4) and (5) are other forms obtalned by solving Eq. (A6) for $m_{0}$ and substituting d numerical value for

## Appendix B. Escape velocity

If a body $i s$ projected away from the earth with sufficient velocity, it will never return. The smallest such velocity is $\therefore$ ill: tue escape velocity, and we shall derive it in this sestion from the law of conservation of energy.

The initial kinetic energy of a body of mass m that has been propected out from the earth with velocity $v i s$ equal to bmv. If this is just nqual to the wor', that must be done against the earth's gravitational force on the body as it travels away, then the body will slow down greatly when it gets very far away, bit it will never entirely stop, as it would if its initial kinetic encrgy were less than the work that must be done against the gravitational attraction.

Thus, our main task $2 s$ to pvaluate the work that $1 s$ done against the earth's gravitational force by a body that moves from the earth's surface to a very large distance away. But to simplify the language of our arguments, we shall evaluate the work done on the body by the earth's gravitational field.

Newton's law of gravitation states that the force on a body of mass m due to the earth (mass M) is

$$
\begin{equation*}
F=G \frac{m M}{R^{2}} \tag{Bl}
\end{equation*}
$$

where $G$ is Newton's gravitational constant and $R$ is the distance from the body to the center of the earth. Wher 'e body moves a small aistance : further away from the earth, the w ione on it by the gravitational force will be

$$
\begin{equation*}
\Delta W=-F(\Delta R)=(G \mathrm{mM}) \frac{-\Delta R}{R^{*}} \tag{B2}
\end{equation*}
$$

where the minus sign arises because the force opposes the increase in $R$.
Now we must add up all the $L$ 's's for all the $\therefore R^{\prime}$ 's as the body moves from the earth's surface to a very great distance. In Eq. (B2), the quantity (GmM) is a simple constant, but $1 / R^{*}$ changes continualiy as the body noves away, and we must find some way to expyess the ratio $-(\Delta R) / R^{2}$ as a change in some other quantity. One way to find this desired quantity $i s$ to guess at $1 t$ and then try to prove that the guess is correct. From the fact that $-(\Delta R) / R^{2}$ has the units of a recıprocal length, we might guess that it could equal $A(1 / R)$. The change in $1 / R$, as $R$ itself changes by $t \mathrm{R}$, wll be:

$$
\therefore\left(\frac{1}{R}\right)=\frac{1}{R+\therefore R}-\frac{1}{R}=\frac{-\Delta R}{R(R+\Delta R)}
$$

This is almost the result we were seeking, and now we note that we are free to make the individual steps $\therefore \mathrm{R}$ as small as we like. Thus, we can make $-(\hat{R}) / R^{2}$ equal to $:(1 / R)$ to any accuracy that we may wish to choose. In the limit as the steps are made smaller and smaller, the relation becomes exact, although we cannot go into the proof of this here.

Accordingly, we can rewrite Eq. (B2) as follows:

$$
L W=(G m M) \quad \Delta\left(\frac{1}{R}\right) .
$$

This equation states that the steps $t \mathrm{~W}$ in the total work done are just equal to the constant ( GmM ) times the corresponding changes in the guantity $1 / R$. The sum of all the CW 's, therefore, will be equal to the total change in the quantity $G \mathrm{mM} / \mathrm{R}$. If the kody moves far enough from the earth, we may take the final value of this quantity as zero (because $R$ "approaches infinity"), and the initial value was $G \mathrm{~mm} / \mathrm{R}$, where R is the radius of the earth. The total net change is the finale value mind the rattal one:

$$
\begin{equation*}
W=-\frac{G m M}{R_{\mathrm{e}}} \tag{B3}
\end{equation*}
$$

We can simplify this result and eliminate the factor $G M$ by observing that, when $R=R_{e}$, Eq. (Bl) will give the gravitational force on the vociy when it is at the earth's surface and that this force must be simply mg.

$$
\frac{G M}{R_{e}^{2}} m=F \text { (at sur:ace) }=m g
$$

Thus, $G M=g R_{e}{ }^{2}$, and when this is substituted into $E q$. (B3), we obtain:

$$
\begin{equation*}
w=-m g R_{e} \tag{B4}
\end{equation*}
$$

The work done by the body against the gravitational attriction of the earth will be just the negative of thas quantity, and we have already observed that, if $v i s$ equal to the escape velocity, this work must equal the initial kinetic energy of the body:

$$
m g R_{e}=\frac{\xi}{n} v^{2} .
$$

Multiplying througn by $2 / m$ and taking the square root of both sides of this equation, we ontain the final formula for the escape velocity:

$$
\begin{equation*}
v(\text { escape })=\sqrt{2 G R_{e}} \tag{B5}
\end{equation*}
$$

Notice that this is independent of the mass of the wody. Inserting the numerical values $R_{f}=6400 \mathrm{~km}, g=0.0098 \mathrm{~km} / \mathrm{sec}^{2}$, we arrive at the value we have been seekifg:
$v($ escape $)=11.2 \mathrm{~km} / \mathrm{sec}$.

# 2: Looking for a New Law 

Richard P. Feynman

In general we look for a new law by the following process. First we guess it. Then we compute the consequences of the guess to see what would be implied if this law that we guessed is right. Then we compare the result of the computation to nature, with experiment or experience, compare it directly with observation, to see if it works. If it disagrees with experiment it is wrong. In that simple statement is the key to science. It does not make any difference how heautiful your guess is. It does not make any difference how smart you are, who made the guess, or what his name is - if it disagrees with experiment it is wrong. That is all there is to it. It is true that one has to check a little to make sure that it is wrong, because whoever did the experiment may have reported incorrectly, or there may have been some feature in the experiment that was not noticed, some dirt or something; or the man who computed the consequences, even though it may have been the one who made the guesses, could have made some mistake in the analysis. These are obvious remarks, so when I say if it disagrees with experiment it is wrong, I mean after the exreriment has been checked, the
calculations have been checked, and the thing has been rubbed back and forth a few times to make sure that the consequences are logical consequences from the guess, and that in fact it disagrees with a very carefully checked experiment.
This will give you a somewhat wrong impression of science. It suggests that we keep on guessing possibilities and comparing them with experiment, and this is to put experiment into a rather weak position. In fact experimenters have a certain individual character. They like to do experiments even if nobody has guessed yet, and they very often do their experiments in a region in which people know the theorist has not made any guesses. For instance, we may know a great many laws, but do not know whether they really work at high energy, because it is just a good guess that they work at high energy. Experimenters have tried experiments at higher energy, and in fact every once in a while experiment produces trouble; that is, it produces a discovery that one of the things we thought right is wrong. In this way experiment can produce unexpected results, and that starts us guessing again. One instance of an unexpected result is the mu meson and its neutrino, which was not guessed by anybody at all before it was discovered, and even today nobody yet has any method of guessing by which this would be a natural result.

You can see, of course, that with this method we can attempt to disprove any definite theory. If we have a definite theory, a real guess, from which we can conveniently compute consequences which can be compared with experiment, then in principle we can get rid of any theory. There is always the possibility of proving any definte theory wrong; but notice that we can never prove it right. Suppose that you invent a good guess, calculate the consequences, and discover every time that the consequences you have calculated agree with experiment. The theory is then right? No, it is simply not proved wrong. In the future you could compute a wider range of consequences, there could be a wider range of experiments, and you might then discover that the
thing is wrong. That is why laws like Newton's laws for the motion of planets last such a long time. He guessed the law of gravitation, calculated all kinds of consequences for the system and so on, compared them with experiment - and it took several hundred years before the slight arror of the motion of Mercury was observed. During all that time the theory had not been proved wrong, and could be taken temporarily to be right. But it could never be proved right, because tomorrow's experiment might succeed in proving Wrong what you thought was right. We never are definitely
right, we can only rather remark only be sure we are wrong. However, it is last so long.
One of the ways of stopping science would be only to do experiments in the region where you know the law. But experimenters search most diligently, and with the greatest effort, in exactly those places where it seems most likely that we can prove our theories wrong. In other words we are trying to prove ourselves wrong as quickly as possible, betoday among that way can we find progress. For example, know where to look fow energy phenomena we do not right, and so there is no trouble, we think everything is all for trouble in nuclear particular big programme looking In tnese lectures I am reactions, or in super-conductivity. mental laws. The whole rangntrating on discovering fur a ing, includes also an understanding of physics, which is interestphenomena like super-conductivity and nucther level of these terms of the fundamental laws. But and nuclear reactions, in discovering trouble, something wrong with the fung now about laws, and since among low energy phenomen? nobody knows where to look, all the experiments today in this field of finding out a new law, are of high energy.

Another thing I must point out is that you cannot prose a vague theory wrong. If the guess that you make is pocrlv expressed and rather vague, and the methud that you use not sure, and you say, 'I think
all due to so and so, and such and such do this and that more or less, and I can sort of explain how this works . . $\therefore$, then you see that this theory is good, because it cannot be proved wrong! Also if the process of computing the consequences is indefinite, then with a little skill any experimental results can be made to look like the expected consequences. You are probably familiar with that in other fields. 'A' hates his mother. The reason is, of course, because she did not caress him or love him enough when he was a child. But if you investigate you find out that as a matter of fact she did love him very much, and everything was all right. Well then, it was because she was over-indulgent when he was a child! By having a vague theory it is possible to get either result. The cure for this one is the following. If it were possible to state exactly, ahead of time, how much love is not enough, and how much love is over-indulgent, then there would be a perfectly legitimate theory against which you could make tests. It is usually said when this is pointed out, 'When you are dealing with psychological matters things can't be defined so precisely'. Yes, but then you cannot claim to know anything about it.

You will be horrified to hear that we have examples in physics of exactly the same kind. We have these approximate symmetries, which work something lik - this. You have an approximate symmetry, so you calculate a set of consequences supposing it to be perfect. When compared with experiment, it does not agree. Of course - the symmetry you are supposed $t$ : expect is approximate, so if the agreement is pretty good you say, 'Nice!', while if the agreement is very poor you say, 'Well, this pa ${ }_{1}$ 'icular thing must be especially sensitive to the failure of the symmetry'. Now you may laugh, but we have to make progress in that way. When a subject is first new, and these particles are new to us, this jockeying around, this 'feeling' way of guessing at the results, is the beginning of any science. The same thing is true of the symmetry proposition in physics as is true of psychology, sr do not laugh too hard. It is necessary in the beginning to be very carerul. It is easy to fall into the deep
end by this kind of vague theory. It is hard to prove it wrong, and it takes a certain skill and experience not to walk off the plank in the game.
In this process of guessing, computing consequences, and comparing with experiment, we can get stuck at various stages. We may get stuck in the guessing stage, when we have no ideas. Or we may get stuck in the computing stage. For example, Yukawa* guessed an idea for the nuclear forces in 1934, but nobody could compute the consequences because the mathematics was too difficult, and so they could not compare his idea with experiment. The theories remained for a long time, until we discovered all these extra particles which were not contemplated by Yukawa, ard therefore it is undoubtedly not as simple as the way Yukawa did it. Another place where you can get stuck is at the experimental end. For example, the quantum theory of gravitation is going very slowly, if at all, because all the experiments that you can do never involve quantum mechanics and gravitation at the same time. The gravity force is too weak compared with the electrical force.

Because I am a theoretical physicist, and more delighted with this end of the problem, I want now to concentrate on how you make the guesses.
As I said before, it is not of any importance where the guess comes from; it is only important that it should agree with experiment, and that it should be as definite as possible. 'Then', you say, 'that is very simple. You set cp a machine, a great computing machine, which has a random wheel in it that makes a succession of guesses, and each time it guesses a hypothesis about how nature should work it computes immediately the consequences, and makes a comparison with a list of experimental results it has at the other end'. In other words, guessing is a dumb man's job. Actually it is quite the opposite, and I will try to explain why.

The first problem is how to start. You say, 'Well I'd start off with all the knowe principles'. But all the principles
*Hideki Yukawa, Japanese physicist. Director of Research Institute for Fundamental Physics at Kyoto. Nobel Prize 1949.
that are known are inconsistent with each other, so something has to be removed. We get a lot of letters from people insisting that we ought to makes holes in our guesses. You see, you make a hole, to make room for a new guess. Somebody says, 'You know, you people always say that space is continuous. How do you know when you get to a small enough dimension that there really are enough points in between, that it isn't just a lot of dots separated by little distances?' Or they say, 'You know those quantum mechanical amplitudes you told me about, they're so complicated and absurd, what makes you think those are right? Maybe they aren't right'. Such remarks are obvious and are perfectly clear to anybody who is working on this problem. It does not do any good to point this out. The problem is not only what might te wrong but what, precisely, might be substituted in place of it. In the case of the continuous space, suppose the precise proposition is that space really consists of a series of dots, and that the space between them does not mean anything, and that the dots are in a cubic array. Then we can prove immediately that this is wrong. It does not work. The problem is not just to say something might be wrong, but to replace it by something - and that is not so easy. As soon as any really dehrite idea is substituted it becomes almost immediately apparent that it does not work.
The second difficulty is that there is an infinite number of possibilities of these simple types. It is something like this. You are sitting working very hard, you have worked for a long time trying to open a safe. Then some Joe comes along who knows nothing about what you are doing, except that you are trying to open the safe. He says 'Why don't you try the combination 10:20:30?' Because you are busy, you have tried a lot of things, maybe you have already tried 10:20:30. Maybe you know already that the middle number is 32 not 20 . Maybe you know as a matter of fact that it is a five digit combinatica. .. . So please do not send me any letters trying to tell me how the thing is going to work. I read them - I always read them to make sure that I have not already thought of what is suggested - but it takes too
long to answer them, because they are usually in the class 'try 10:20:30'. As usual, nature's imagination far surpasses our own, as we have seen from the other theories which are subtle and deep. To get such a subtle and deep guess is not so easy. One must be really clever to guess, and it is not possible to do it blindly by machine.

I want to discuss now the art of guessing nature's laws. It is an art. How is it done? One way you might suggest is to look at history to see how the other guys did it. So we look at history.

We must start with Newton. He had a situation where he had incomplete knowledge, and he was able to guess the laws by putting together ideas which were all relatively close to experiment; there was not a great distance between the observations and the tests. That was the first way, but today it does not work so well.
The next guy who did something great was Maxwell, who obtained the laws of electricity and magnetism. What he did was this. He put together all the laws of electricity, due to Faraday and other people who came before him, and he looked at them and realized that they were mathematically inconsistent. In order to straighten it out he had to add one term to an equation. He did this by inventing for n:mself a model of idler wheels and gears and so on in space. He found what the new law was - but nobody paid much attention because they did not believe in the idler wheels. We do not believe in the idler wheels today, but the equations that he obtained were correct. So the logic may be wrong but the answer right.
In the case of relativity the discovery was completely different. There was an accumulation of paradoxes; the known laws gave inconsistent results. This was a new kind of thinking, a thinking in terms of discussing the possible symmetries of laws. It was especially difficult, because for the first time it was realized how long something like Newton's laws could seem right, and still ultimately be wrong. Also it was difficult to accept that ordinary ideas of time and space, which seemed so instınctive, could be wrong.

Quantum mechanics was discovered in two independent ways - which is a lesson. There again, and even more so, an enormous number of paradoxes were discovered experimentally, things that absolutely could not be explained in any way by what was known. It was not that the knowledge was incomplete, but that the knowledge was too complete. Your prediction was that this should happen - it did not. The two different routes were one by Schrodinger,* who guessed the equation, the other by Heisenberg, who argued that you must analyse what is measurable. These two different philosophical methods led to the same discovery in the end.

More recently, the discovery of the laws of the weak decay I spoke of, when a neutron disintegrates into a proton, av electron and an anti-neutrino - which are still only partly known - add up to a somewhat different situation. This time it was a case of incomplete knowledge, and only the equation was guessed. The special difficulty this time was that the experiments were all wrong. How can you guess the right answer if, when you calculate the result, it disagrees with experiment? You need courage to say the experiments must be wrong. I will explain where that courage comes from later.

Today we have no paradoxes maybe. We have this infinity that comes in when we put all the laws together, but the people sweeping the dirt under the rug are so clever that one sometines thinks this is not a serious paradox. Again, the fact that we have found all these particles does not tell us anything except that our knowledge is incomplete. I am sure that history does not repeat itself in physics, as you can tell from looking at the examples I have given. The reason is this. Any schemes - such as 'think of symmetry laws', or 'put the information in mathematical form', or 'guess equations' - are known to everybody now, and they are all tried all the time. When you are stuck, the answer cannot ke one of these, because you will have tried these right away.
*Erwin Schrodinger, Austrian theoretical physicist. Won Nobel Prize for Physics 1933 with Paul Dirac.

There must be another way next time. Each time we get into this log.jam of too much trouble, too many problems, it is because the methods that we are using are just like the ones we ha'e used before. The next scheme, the new discovery, is going to be made in a completely different way. So history does not help us much.

I should like to say a little about Heisenberg's idea that you shouid not talk about what you cannot measure, because many people talk about this idea without really understanding it. You can interpret this in the sense that the constructs or inventions that you make must be of such a kind that the consequences that you compute are comparable with experiment - that is, that you do not compute a consequence like 'a moo must be three goos', when nobody knows what a moo or a goo is. Obviously that is no good. But if the consequences can be compared to experiment, then that is all that is necessary. It does not matter that moos and goos cannot appear in the guess. You can have as much junk in the guess as you like, provided that the consequences can be compared with exper:ment. This is not always fuily appreciated. People often complain of the unwarranted extension of the ideas of particles and paths, etc., into the atomic realm. Not so at all; there is nothing unwarranted abn $n t$ the extension. We must, and we should, and we always do. uxtend as far as we can beyond what we already know, bevond those ideas that we have already obtained. Dangerous? Yes. Uncertain? Yes. Blt it is the only way to make progress. Although it is uncert in, it $s$ necessary to make science useful. Science is only useful if it tells you about some experiment that has not been done; it is no good if it only tells you what just went on. It is necessary to extend the ideas beyond where they have been tested. For example, in the law of gravitation, which was developed to understand the motion of planets, it would have been no use if Newton had simply said, 'I now understand the planets', and had not felt able to try to compare it with the earth's pull on the moon, and for later men to say 'Maybe what holds the galaxies together is gravitation'. We must try that. You
could say, 'When you get to the size of the galaxies, since you know nothing about it, anything can happen'. I know, but there is no science in accepting this type of limitation. There is no ultimate understanding of the galaxies. On the other hand, if you assume that the entire behaviour is due only to known laws, this assumption is very limited and definite and easily broken by experiment. What we are looking for is just such hyootheses, very definite and easy to compare with experiment. The fact is that the way the galaxies behave so far does not seem to be against the proposition.

I can give you another example, even more interesting and important. Probably the most powerful single assumption that contributes most to the progress of biology is the assumption that everything animals do the atoms can do, that the things that are seen in the biological world are the results of the behaviour of physical and chemical phenomena, with no 'extra something'. You could always say, 'When you come to living things, anything can happen'. If you accept that you will never understand living things. It is very hard to believe that the wiggling of the tentacle of the octopus is nothing but some fooling around of atoms according to the known physical laws. But when it is investigated with this hypothesis one is able to make guesses quite accurately about how it works. In this way one makes great progress in understanding. So far the tentacle has not been cut off - it has not been found that this idea is wrong.

It is not unscientific to make a guess, although many people who are not in science think it is. Some years ago I had a conversation with a layman about flying saucers - because I am scientific I know all about flying saucers! I said 'I don't think there are flying saucers'. So my antagonist said, 'Is it impossible that there are flying saucers? Can you prove that it's impossible?' 'No', I said, 'I can't prove it's impossible. It's just very unlikely'. At that he said, 'You are very unscientific. If you can't prove it impossible then how can you say that it's unlikely?' But that is the way that is scientific. It is scientific only to say what is more likely and
what less likely, and it to be proving all the time the possible and impossible. io define what I mean, I might have said to him, 'Listen, I mean that from my knowledge of the world that I see around me, I think that it is much more likely that the reports of flying saucers are the results of the known irrational characteristics of terrestrial intelligence than of the unknown rational efforts of extra-terrestrial intelligence'. It is just more likely, that is all. It is a good guess. And we always try to guess the most likely explanation, keeping in the back of the mind the fact that if it does not work we must discuss the other possibilities.

How can we guess what to keep and what to throw away? We have all these nice principles and known facts, but we are in some kind of trouble: either we get the infinities, or we do not get enough of a description - we are missing some parts. Sometimes that means that we have to throw away some idea; at least in the past it has always turned out that some deeply held idea had to be thrown away. The question is, what to throw away and what to keep. If you throw it all away that is going a little far, and then you have not much to work with. After all, the conservation of energy looks good, and it is nice, and I do not want to throw it away. To guess what to keep and what to throw away takes considerable skill. Actuallv it is probably merely a matter of luck, but it looks as if it takes considerable skill.

Probability amplitudes are very strange, and the first thing you think is that the strange new ideas are clearly cock-eyed. Yet everything that can be deduced from the ideas of the existence of quantum mechanical probability amplitudes, strange though they are, do work, throughout the long list of strange particles, one hundred per cent. Therefore I do not believe that when we find out the inner guts of the composition of the world we shall find these ideas are wrong. I think this part is right, but I am only guessing: I am telling you how I guess.

On the other hand, I believe that the theory that space is continuous is wrong, because we get these infinities and other difficulties, and we are left with questions on what deter-
mines the size of all the particles. I rather suspect that the simple ideas of geometry, extended down into infinitely small space, are wrong. Here, of course, I am only making a hole, and not telling you what to substitute. If I did, I should finish this lecture with a new law.
Some people have used the inconsistency of all the principles to say that there is only one possible consistent world, that if we put all the principles together, and calculate very exactly, we shall not only be able to deduce the principles, but we shall also discover that these are the only principles that could possibly exist if the thing is still to remain consistent. That seems to me a big order. I believe that sounds like wagging the dog by the tail. I telieve that it has to be given that certain things exist - not all the 50 -odd particles, but a few little things like electrons, etc. - and then with all the principles the great complexities that come out are probably a definite consequence. I do not think that you can get the whole thing from arguments about consistencies.
Another problem we have is the meaning of the partial symmetries. These symmetries, like the statement that neutrons and protons are nearly the same but are not the same for electricity, or the fact that the law of reflection symmetry is perfect except for one kind of reaction, are very annoying. The thing is almost symmetrical but not completely. Now two schools of thought exist. One will say that it is really simple, that they are really symmetrical but that there is a little complication which knocks it a bit cock-eyed. Then there is another school of thought, which has only one representati $a$, myself, which says no, the thing may be complicated and become simple only through the complications. The Greeks believed that the orbits of the planets were circles. Actually they are ellipses. They are not quite symmetrical, but they are very close to circles. The question is, why are they very close to circles? Why are they nearly symmetrical? Because of a lung complicated effect of tidat friction - a very complicated idea. It is possible that nature in her heart is completely unsymmetrical in these things, but in the complexities of reality it gets to lock approximately
as if it is symmetrical, and the ellipses look almost like circles. That is another possibility; but nobody knows, it is just gucsswork.

Suppose you have two theories, A and B, which look completely different psychologically, with different ideas in them and so on, but that all the consequences that are computed from each are exactly the same, and both agree with experiment. The two theories, although they sound different at the beginning, have all consequences the same, which is usually easy to prove mathematically by showing that the logic from A and B will always give corresponding consequences. Suppose we have two such theories, how are we going to decide which one is right? There is no way by science, because they both agree with experiment to the same extent. So two theories, although they may have deeply different ideas behind them, may be mathematically identical, and then there is no scientific way to distınguish them.

However, for psychological reasons, in order to guess new theories, these two things may be very fat from equivalent, because one gives a man different ideas from the other. By putting the theory in a certain kind of framework you get an idea of what to change. There will be something, for irstance, in theory A that talks about something, and you will say, 'I'll change that idea in here'. But to find out what the corresponding thing is that you are going to change in B may be very complicated - it may not be a simple idea at all. In other words, although they are idencial before they are changed, there are certain wajo of changing one which looks natural which will not look natural in the ot"er. Therefore psychologically we must keep all the theories in our heads, and every theoretical physicist who is any good knows six or seven different theoretical representations for exactly the same physics. He knows that they are all equivalent, and that nobody is ever going to be able to decide which one is right at that level, but he keeps them in his head, hoping that they will give him different ideas for guessing.

That reminds me of another point, that the philosophy or
ideas around a theory may change enormously when there are very tiny changes in the theory. For instance, Newton's ideas about space and time agreed with experiment very well, but in order to get the correct motion of the orbit of Mercury, which was a tiny, tiny difference, the difference in the character of the theory needed was enormous. The reason is that Newton's laws were so simple and so perfect, and they produced definite results. In order to get something that would produce a slightly different result it had to be completely different. In stating a new law you cannot make imperfections on a perfect thing; you have to have another perfect thing. So the differences in philosophical ideas between Newton's and Einstein's theorics of gravitation are enormous.
What are these philosophies? They are really tricky ways to compute consequences quickly. A philosophy, which is sometimes called an understanding of the law, is simply a way that a person holds the laws in his mind in order to guess quickly at consequences. Some people have said, and it is true in cases like Maxwell's equations, 'Never mind the philosophy, never mind anything of this kind, just guess the equations. The problem is only to compute the answers so that they agree with experiment, and it is not necessary $t$, have a philosophy, or argument, or words, about the equation'. That is good in the sense that if you only guess the equation you are not prejudicing yourself, and you will guess better. On the other hand, maybe the philosophy helps you to guess. It is very hard to say.

For those people who insist that the only thing that is important is that the theory agrees with experiment. I would like to imagine a $:$ zussion between a Mayan astronomer and his student. Ine Mayans were able to calculate with great precision predictions, for example, for eclipses and for the position of the moon in the sky, the position of Venus, etc. It was all done by arithmetic. They counted a certain number and subtracted some numbers, and so on. There was no discussion of what the moon was. There was no discussion even of the idea that it went around. They just
calculated the time when there would be an eclipse, or when the moon would rise at the full, and so on. Suppose that a young man went to the astronomer and said, 'l have an idea. Maybe those things are going around, and there are balls of something like rocks out there, and we could calculate how they move in a completely different way from just calculating what time they appear in the sky'. 'Yes', says the astronomer, 'and how accurately can you predict eclipses?' He says, 'I haven't developed the thing very far yet'. Then says the astronomer, 'Well, we can calculate eclipses more accurately than you can with your model, so you must not pay any attention to your idea because obviously the mathematical scheme is better'. There is a very strong tendency, when someone comes up with an idea and says, 'Let's suppose that the world is this way', for people to say to him, 'What would you get for the answer to such and such a problem?' Anc' he says, 'I haven't developed it far enough'. And they say, 'Well, we have already developed it much further, and we can get the answers very accurately'. So it is a problem whether or not to worry about philosophies behind ideas.

Another way of working, of course, is to guess new principles. In Einstein's theory of gravitation he guessed, on top of all the other principles, the principle that corresponded to the idea that the forces are alwa' s proportional to the masses. He guessed the principle that if you are in an accelerating car you cannot distinguish that from being in a gravitational field, and by adding that principle to all the other principles, he was able to deduce the correct laws of gravitation.
That outlines a number of possible ways of guessing. I would now like to come to some other points abnut the final result. First of all, when we are all finished, and we have a mathematical theory by which we can compute consequences, what can we do? It really is an amazing thing. In order to figure out what an atom is going to do in a given situation we make up rules with marks on paper, carry them into a machine which has switches that open and close in some complicated way, and the result will tell us what the
atom is going to do! If the way that these switches open and close were some kind of model of the atom, if we thought that the atom had switches in it, then I would say that I understood more or less what is going on. I find it quite amazing that it is possible to predict what will happen by mathematics, which is simply following rules which really have nothing to do with what is going on in the original thing. The closing and opening of switches in a computer is quite different from what is happening in nature.

One of the most important things in this 'guess - compute consequences - compare with experiment' business is to know when you are right. It is possible to know when you are right way ahead of checking all the consequences. You: can recognize truth by its beauty and simplicity. It is always easy when you have made a guess, and done two or three little calculations to make sure that it is not obviously wrong, to know that it is right. When you get it right, it is obvious that it is right - at least if you have any experience - because usually what happens is that more comes out than goes in. Your guess is, in fact, that something is very simple. If you cannot see immediately that it is wrong, and it is simpler than it was before, then it is right. The inexperienced, and crackpots, and people like that, make guesses that are simple, but you can immediately see that they are wrong, so that does not count. Others, the inexperienced students, make guesses that are very complicated, and it sort of looks as if it is all right, but I know it is not true because the truth always turns out to be simpler than you thought. What we need is imagination, but imagination in a terrible strait-jacket. We have to find a new view of the world that has to agree with everything that is known, but disagree in its predictions somewhere, otherwise it is not interesting. And in that disagreement it must agree with nature. If you can find any other view of the world which agrees over the entire range where things have already been observed, but disagrees somewhere else, you have made a great discovery. It is very nearly impossible, but not quite, to find any theory thich agrees with experiments over the
entire range in which all theories have been checked, and yet gives different consequences in some other range, even a theory whose different consequences do not turn out to agree with nature. A new idea is extremely difficult to think of. It takes a fantastic imagination.

What of the future of this adventure? What will happen ultimately? We are going along guessing the laws; how many laws are we going to have to guess? I do not know. Some of my colleagues say that this fundamental aspect of our science will go on; but I think there will certainly not be perpetual novelty, say for a thousand years. This thing cannot keep on going so that we are always going to discover more and more new laws. If we do, it will become boring that there are so many levels one underneath the other. It seems to me that what can happen in the future is either that all the iaws become known - that is, if you had enough laws you could compute consequences and they would always agree with experiment, which would be the end of the line or it may happen that the experiments get harder and harder to make, more and more expensive, so you get 99.9 per cent of the phenomena, but there is always some phenomenon which has just been discovered, which is very hard to measure, and which disagrees; and as soon as you have the explanation of that one there is always another one, and it gets slower and slower and more and more uninteresting. That is another way it may end. But I think it has to end in one way or another.
We are very lucky to live in an age in which we are still making discoveries. It is like the discovery of America you only discover it once. The age ir which we live is the age in vhich we are discovering the fundamental laws of nature, ard that day will never come again. It is very exciting, it is marvellous, but this excitement will have to go. Of course in the future there will be other interests. There will be the interest of the connection of one level of phenomena to another - phenomena in biology and so on, or, if you are talking about exploration, exploring other planets, but there will not still be the same things that we are doing now.

Another thing that will happen is that ultimately, if it turns out that all is known, or it gets very dull, the vigorous philosophy and the careful attention to all these things that I have been talking about will gradually disappear. The philosophers who are always on the outside making stupid remarks will be able to close in, because we cannot push them away by saying, 'If you were right we would be able to guess all the rest of the laws', because when the laws are all there they will have an explanation for them. For instance, there are always explanations about why the world is three-dimensional. Well, there is only one world, and it is hard to tell if that explanation is right or not, so that if everything were known there would be some explanation about why those were the right laws. But that explanation would be in a frame that we cannot criticize by arguing that that type of reasoring will not permit us to go further. There will be a degeneration of ideas, just like the degeneration that great explorers feel is occurring when tourists begin moving in on a territory.

In this age people are experiencing a delight, the tremendous delight that you get when you guess how nature will work in a new situation never seen before. From experiments and information in a certain range you car guess what is going to happen in a region where no one has ever explored before. It is a little different from regular exploration in that there are enough clues on the land discovered to guess what the land that has not been discovered is going to look like. These guesses, incidentaily, are often very different from what you have already seen - they take a lot of thought.
What is it about nature that lets this happen, that it is possible to guess from one part what the rest is going to do? That is an unscientific question: I do not know how to answer it, and therefore I am going to give an unscieutific answer. I think it is because nature has a simplicity and therefore a great beauty.

Jeremy Bernstein, born in Rochester, New York in 1929 is Prafessor of Physics of Stevens Institute of Technology, in New Jersey. He was educated at Celumbia Grammor Schaol in New Yark City and recerved a bac elar's and master's degree in mothematics, and a doctore a in physics from Harvord University. He hos dane research at the Harvord Cyclotran Laboratary, the Institute for Advanced Study of Princeton, Las Alomos, of the Braoknoven Na tianal Laborataries, and is frequently a visiting physicist ot CERN (Canse:] Eurapéan pour la Recherche Nucléaire) in Grneva. Bernstein is the author of The Anclytical Erg re Camputers, Post, Present and Future, Ascent, on account af mauntaineering in the Alps, and has written book reviews and profile articles for the magazine, The New Yarker.

## ARIHUR C. CLARKE

Arthur C. :.-L $^{-b}$ British scientist and writer, is a Fellaw of the Royal Astroriu... anl Saciety. Curing Warld War II he served as technical aftica. . harge af the first aircroft graund-cantrolled opprouc* praject He has wan the Kalinga rrize, given by UNzSCO for the popularization af science The feasibility af many of the current spoce develapments was perceived and outlined by Clarike in the 1930's. His science fictian novels include Chilchoods End and The City and the Stars.

## PAUL ADRIEN MAURICE DIRAC

Paul Adrien Maurice Diroc is ar.e of the majar figures in madern mathematics ond theoretical physics. He received the Nobel Prize in 1933 for $t$ is contritution to quontum mechanics. Diroc wos born in 1902 in Bristal and received his boche're's degree in engineering from Bristol University. Later he became a research student in mothemotics ot St. Jahn'; Callege, Cambridge, and received his Ph.D, in 1920. He is naw Lucasion Professor of Mothemotiss at Combridge, England.

## ALBERT EINSTEIN

Albert Einstein, considered to be the most creative physical scientist since Newtan, was nevertheless a humble and sametimes rather shy mon. He was born in Uim, Germany, in 1879. He seemed to learn sa slawly that his porents feared that he might be retarded. After groduating fram the Palytechnic Institute in Zurich, he become a junior afficial of the Patent Office ot Berne At the age of twenty-six, and quite unknown, he published three revalutionary popers in theoretical physics in 1905. The first paper extended Max Planck's ideos of quantizatian af energy, and established the quantum theary of radictian. For this wark he received the ivabel Prize for 1929 The secand poper gove a matnematic al theary of Brownion mation, yrelding a calculation of the size of a molecule. His third poper founded the specior theory of relatidity. Einsten's loter wark centered on the general the, , of relativity. His wark has o profaund
infl sence not anly on physics, but alsa an philasophy An eloquent and widely belaved man, Einstein taak an active par. in liberal and anti-war mavements. Fleeing from Nozi Germany, he settled in the United States in 1933 of the Institute for Advanced Study in Princetan. He died in 1955.

## GEORGE GAMOW

Gearge Gomaw, a thearetical physicist from Russic, recerved his Ph.D in physics of the University of Leningrad. At Leningrad he became prafessor after being a Corlsberg fellaw and a university fellow at the University af Capenhagen and a Rackefeller fellaw of Cambridge University. He came to the United Stotes in 1933 to teach of the Gearge Washington University and later at the University af Calarada His popularizotions of physics ore much odmired.

3ANESH HOFFMANN
Banesh Hoffmann, born in Richmond, England in 1906, ottended Oxford and Princetan. He has been a member of the Institute of Advanced Study, electrical enginee: at the Federal Telephane and Radia Laborataries, reseorcher of King's College, London, and a consultant for Westinghause Electric Corporotion's science tclent search rests. He has wan the distinguished teacher oword or Queens Callege, where he is Professor of Mathematics. During the 1966-1967 year he was an the staff of Horvard Project Physics

## LEOFOLD INFELD

Leapold Infeld, a ca-warker with Albert Einstein in general ;elativity theary, was born in 1898 in Paland After studying at the Cracow ond Berlin Universities, he become a Rackefeller Fellow at Combridge where he worked with Max Born in electromagnetic theary, and then a member of the Institute for Advenced Study of Princetan Far eleven years he was Professor oi Applied Mathematics at the University of Iaronta. He then returned ta Paland and become trofessar of Physics at the University of Warsow and until his death an 16 Jonvory 1968 he was directar af the Trearetical Physics Institute of the university. A member of the presidium of the Polish Academy ai Science, Infeld conducted research in 'heoretical phy.ics, especiolly relotivity and quantum theories. Infeld was the outhor of The New Field Theory, The Warld in Madern Science, Quest, Albert Einstein, and with Einstein The Evalution of Physics.

MARTIN J. KLEIN
Martin J. Klein was born in New Yark City and attended Calumbio University and Massachusetts Institute of Technolagy. He has been a Natiancl Research Fellaw of the Dublin Institute for Acivanced Studies and a Guggenheim Fellaw al the Univ rsity of Leyden, Halland. He hrs raught at Mif and Case Institute and is now Prafessar of Yale University His
moin interest is in the history of relotivity ond quonqum mectionies

## EDWARD MILLS PURCELL

Edword Mills Purcell, Professor of Physics ot Horvord University, wos born in 1912 in Toylorville, Illinois. He wos educated of Purdue University and of Horvord During World Wor II he worked as a reseorcher at the Rodiotion Loborotory, ond he hos been o member of the Science Advisory Boord for the United Stotes Air Force and of the President's Science Advisory Committee For his work in nueleor mognetism, E. M. Purcell wos oworded the 1952 Nobel Prize in Physics. He hos olso speciolized in microwove phenomeno ond rodio-frequency spectroscopy. With Furry ond Street he hos written o textbnot, Physics for Science ond Engineering Students

## ERIC MALCOLM ROGERS

Eric Aalcolm Rogers, Professor of Physics of Princeton University, was born in Bickley, Englond in 1902. He received his educotion ot Cambridge and loter wos o demonstrotor ot the Covendish Loborotory Since 1963 he hos been the orgonize in physics for the Nuffield Foundation Science Teoching Proi . He is the outhor of the tex book, Physics sor the Inguiring Mind.

## ERWIN SCHRODINGER

Erw:r, Jchrödinger (1887-1961) wos born in Vienno ond becone suzcessor of Mox Plonck os professor of physics o: the University of Berlin His work provided some of the bosic equations of the quontum theory. Jointly with Poul A M Dirac he wos owarded the Nobel Prize in physics in 1933 for the discovery of new produc= live forms of otomic theary Originolly he hod planned to be o philcsopher, and he wrote widely-reod bosks conrerning the relction between science ond the humonities, os well as some poetry

## CYRIL STANLEY SMITH

Cyril Stanley Smith, F ofessor of Physics of Mossochusetts instriute of Technology, was born in Birminghem, Englond, in 1903. In 1926 he reseived his doctor of science from MIT. He has cone rescarch $i$ physical metollurgy of MIT, the Americon Brass Ca pany, and during World War II, the Los Alomos labormry Forl:is work there he received the United Stores Mefoi of Merit in 1946. Professor Smith hos sersed on the General Advisory Committee to the Atomic Energy Commission ond on the President's Serentific Advisory Connitee. His intarnst resei eq deeply into history of sriense and technology, he is -lso an art collector.

## CHARLES PERCY SNOW

Chorles Percy Snow, Boron of Leicester, wos born in 1905 and educoted of University Callege, Leicester, ond ot Christ's College, Combridge Although well known as a novelist, especiolly deoling with the lives and problems of professionol men, he hos held sush diverse positions os chief of scientific personnel for the Ministry of Lobour "Civil Service Commissioner, ond a Director of the English Electric Co.., Lid $\mathrm{H}_{1}$ writings hove been widely occloimed, omong his novels are The Search, The New Men ond Corridors of Power His nonfiction backs on science ond its consequences include The Two Cultures ond the Scientific Revolution, and Science ond Government

## JOHN LIGHTON SYNGE

John Lightan Synge wos born in Irelond in 1897. He hos tought of universities in Irelond, Conodo, and the United States, ond is currently Professor of Mothemotics of the Institute for Advanced Srudies in Dublin. He is the President of the Royal Irish Acodemy. Synge hos written popers on Riemonnion geometry, relotivity, hydrodynomics, ond elosticity, hos been outhor or co-outhor of Gecmetrical Optics ona Principles of Mechonics, ond hos coedited the Mothemotical Popers of Sir W. R. Homilton.

## SIR JOSEPH JOHN THOMSON

Sir Joseph John Thomson (1856-1940) wr. Jorn near Monchester, Englond. At fourteen he entered o college in Monchester, ot twenty he entered Combridge on o scholorship, and at twenty-seven become professor of physics of Combridge It wos Thomson whose work ushered in the period of subotomic reseorch when he showed conclusively that "cothode roys" consisted of electrons With this os a building block he constructed the "Thomson" model of the otom-a sphere of positive electricity in which were embedded negotively chorged electrons In 1906 J . J Thamson wos owarded the Nobel Prise, ond in 1908 he was knighted. During Thomson's period as Director of the Covendish Loborotory of Combridge, eight Nobel Prizes were won by his colleogues. With this start England remained the leoder in subatomic experimental physics for olmost forty yeors
i. FAILURE AND SUCCESS, by Charles Percy Sriow, reprinted with the permission of Charles Scrioner's Sons from The Search, pages 10-12, 91-96, and 99-104, Copyright 1934, 1958 Charles Percy Snow renewal copyright (c) 1962

2 STRUCTURE, SUBSTRUCTURE, SUPERSTRUCTURE by Cyrit Stanley Smith, from Structure in Art and in Science, edited by Gyorgy Kepes, George Braziller, New York, Copyright (c) 1965 Reprinted with permission of the publisher

3 THE ISLAND OF RESEARCH (mop), by Ernest Herburg, American Scientist, Volume 54, No 4, 1966. Reproduced with permission

4 THE 'THOMSON' ATOM, by J J Thomson (18561940), from The World of the Arom, Volume 1, pages 613-6 $\overline{16 \text {, edited by Henry } A \text {. Boorse and }}$ Lloyd Motz, (C) 1966, by Basic Books, Inc., Publishers, New York Reprinted with permission Pages 616-624 from The Corpuscular Theory of Matter by J J Thomson, Charles Scribner's Sons (1907) Reprinted with permission.
5. EINSTEIN, by Leopold Infeld, from Quest, pages 254-262 and 285-294. Copyright 1941 by Leopold Infeld. Reprinted by permission of Doubleday \& Compony, Inc., New York.

6 MR TOMPKINS Aind SIMULTANEITY, by George Gamow, from $M_{r}$ Tompkins In Paperback, Cambridga University Press, Cambridge, 1965, pages 19-24 Reprinted with permission.
7. MATHEMATICS AND RELATIVITY, by Eric $M$ Rogers, from Plysics for the Inquiring Mind. Reprinted by permission of the Princeton University Press, Copyright (©) 1960 by Princeton Univer sity Press, New Jersey.
8. RELATIVITY, Anonymous, fram Imagination's Other Place: Poems of Science and Mathematics, compiled by Helen Plotz, Thomas Y. Crowell Compony, Publishers, New York, 1955.
9. PARABLE OF THE SURVEYORS, by Edwin F. Taylor and John Àchibald Wheeler, from Spacetime Physics. W. H. Freeman and Company, Copyright $\overline{\widetilde{\widetilde{C}}^{\top}} 1966$ San Francisco. Reprinted with permissior
10. OUTSIDE AND INSIDE THE ELEVATOR, ty Albert Einstein and Leopold Infeld, from The Evolution of Physics. The Growth of Ideas from Early Concepts to Relativity and Quanta, pages 214-222, Simon and Schuster, 1961.
11. EINSTEIN AND SOME CIVILIZED DISCONTENTS, by Mart in Kfein, from Physics Today, 18, No. 1, 38-44 (January 1965). Reprinted with permission.
12. THE TEACHER AND THE BOHR THEORY OF THE ATOM, by Chorles Percy Snow, from The Seorch. Reprinted with the permission of Chorles Scribner's Sons, pages 10-12. Copyright 1934, 1958 Chorles Percy Snow, renewol copyright (C) 1962.
13. THE NEW LANDSCAPE OF SCIENCE, by Banesh Hoffmonn, from The Stronge Story of the Quontum, poges 174-199, Dover Publicotions, Inc., New York, 1959. Reprinted through permission of the publisher.

14 THE EVOLUTION OF THE PHYSICIST'S PICTURE OF NATURE, by Poul A. M. Diroc. Reprinted with permission. Copyright (C) Moy 1763 by Scientific Americon, Inc. All rights reserved. Avoiloble seporotely of 20 C eoch os Offprint No. 292 from W. H. Freemon and Compony, Inc., 660 Morket Street, Son Froncisco, Colifornio.
15. DIRAC AND BORN, by Leopold Infeld, from Quest, Copyright 1941 by Leopold infeld. Reprinted by permission of Doubledoy \& Compony, Inc., New York
16. I AM THIS WHOLE WORLD. ERWIN SCHRÖDINGER, from A Comprehensible World: On Madern Science and its Origins, by Jeremy Bernstein, Rondo.n House, New York, 1961.
17. THE FUN_ _MENTAL IDEA OF WAVE MECHANICS, by Erw in Schrodinger, from Nobel Prize Lectures in Physics, 1922-1941, Elsevier Publishing Compony, Amsterdom, 1965. Reprinted with permission.
18. THE SENTINEL, by Arthur C. Clorke, from Expedition to Eorth. Bollontine Books, Inc., New York. Copvright 1953 by Arthur C. Clorke. Reprinted by permission of the outhor ond his ogents Scott Meridith Literory Agency, Inc., 580 Fifth Avenue, New York, New York, 10036.
19. THE SEA-CAPTAIN'S BOX, by John L. Synge, from, Science. Sense and Nonsense, The Jonothon Cope Publishing Compony, London, 1951. Reprinted with permission of W. W. Nortan ond Co., Inc.
20. SPACE TRAVEL: PROBLEMS OF PHYSICS AND ENGINEERING, by the Stoff of Harvord Project Physics.
21. LOOKINE FOR A NEW LAW, by Richord P. Feynm:-1, from The Chorocter of Physicol Law, pages 156-173, British Broodcosting Corporotion, London. By permission of the outhor ond the M.I.T. Press, Combridge Mossochusetts. Copyright 1945 by Richord Feynmon

Cover drawing: "Relativity," 1953, lithograph by M.C. Escher. Courtesy of the Museum of Modern Art, N.Y.C.

(1) Photograph by Glen J. Pearcy.
(2) Jeune fille au corsage rouge lisant. Jean Baptiste Camille Corot. Painting. Collection Buhrle, Zurich.
(3) HPP staff photo.
(4) Femme lisant. Georges Seurat. Conté crayon drawing. Collection C.F. Stoop, London.
(5) Portrait of Pierre Reverdy. Pablo Picasso. Etching. Museum of Modern Art, N.Y.C.
(6) Lecture au lit. Paul Klee. Drawing. Paul Klee Foundation, Museum of Fine Arts, Berne.

Facing p. I Darel Eschbach, Jr.
Pp. 58,204,220 Courtesy of Cal Comp (California Computer Products
Inc.) Anaheim, California.
Pp. 104,120,160 Courtesy of Lloyd Sumner.


[^0]:    Fig it $T$ he same allo ac fis to detomed by cold rolling
    Sote the heterogenerits of the distomion Magmification $\times 3^{\prime \prime \infty}$
    Phote b, $R$. inelsen, 1 nuresth) of Chaga)

[^1]:    ${ }^{1}$ From J. J. Thomson, The Corpust alar Theory of Matter (New York: Charles Scribner's Sons. 1907), pp. 103-167.

[^2]:    - For example he fires a bullet along OX from the orgin at $t=0$ with speed $1000 \mathrm{~m} / \mathrm{set}$ Then the event of the bullet reaching a target 3 meters away mught be recorded as $x=3$ meters $y=0 . z=0 . t=0003 \mathrm{sm}$

[^3]:    - This aberfation is quite distinst from parallax. the apparent motern of near thars akanct the backeround of apmoter dars lhe rrition makes a tar stem to move in the came hind of pution but te apples to oll thare and it is dozem of time becger than the parillar of ewon the nearest stars ( Who a star , dherration, which Lies with this 1 irth telerity, a there monthe nut of phase with its parallax ,

[^4]:    ${ }^{11}$ The latest test (Townes, 1058) made by tuming microwaves in a resondit cauty. gave a nu!! result when it woilld have shown a velocity as small as $1 / 1000$ of the Earthis orbital speed.

[^5]:     onltuing rath 1 as $110 h$ meter. 210105 m
    

[^6]:    ${ }^{24}$ Sir Edmund Whitaker, Frotu Euclud to Eddington op cit, P 117

[^7]:    $\dagger$ Einstein, in a ssmilar connection, in a letter to the archtect Le Corbusier
    $\ddagger$ For a comprehensive set of references to introductory hiterature concerning the special theory of relativity, together with several reprints of artucles, see Special Relativity Theory, Selected Reprints, published for the American Association of Physics Teachers by the American Instutute of Physics, 335 East 45th Street, New York 17. New York, 1963

[^8]:    ${ }^{1}$ Dirac, P. A. M., Quantum Mechanics, Clarendon Press (Oxford, 1930), p. 7.

[^9]:    * Fig. 7 is from E. M. Purcell, "Radioastronomy and Communication

